LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Groetsch, Philipp M. M.; Gege, Peter; Simis, Stefan G. H.; Eleveld, Marieke A.; Peters, Steef (2017)
Publisher: dsfsdf
Languages: English
Types: Article
Subjects: Institut für Methodik der Fernerkundung, EA0, Experimentelle Verfahren
A three-component reflectance model (3C) is applied to above-water radiometric measurements to derive remote-sensing reflectance Rrs(l). 3C provides a spectrally resolved offset D(l) to correct for residual sun and sky radiance (Rayleigh- and aerosol-scattered) reflections on the water surface that were not represented by sky radiance measurements. 3C is validated with a data set of matching above- and below-water radiometric measurements collected in the Baltic Sea, and compared against a scalar offset correction D. Correction with D(l) instead of D consistently reduced the (mean normalized root-mean-square) deviation between Rrs(l) and reference reflectances to comparable levels for clear (D: 14.3 +- 2.5 %, D(l): 8.2 +- 1.7 %), partly clouded (D: 15.4 +- 2.1 %, D(l): 6.5 +- 1.4 %), and completely overcast (D: 10.8 +- 1.7 %, D(l): 6.3 +- 1.8 %) sky conditions. The improvement was most pronounced under inhomogeneous sky conditions when measurements of sky radiance tend to be less representative of surface-reflected radiance.Accounting for both sun glint and sky reflections also relaxes constraints on measurement geometry, which was demonstrated based on a semi-continuous daytime data set recorded in an eutrophic freshwater lake in the Netherlands. Rrs(l) that were derived throughout the day varied spectrally by less than 2 % relative standard deviation. Implications on measurement protocols are discussed. An open source software library for processing reflectance measurements was developed and is made publicly available.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | TAPAS
  • EC | JERICO
  • EC | PROTOOL
  • EC | DEVOTES
  • EC | INFORM
  • EC | WATERS
  • EC | AQUA-USERS
  • EC | COBIOS

Cite this article