LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
B. N. Sulman; A. R. Desai; B. D. Cook; N. Saliendra; D. S. Mackay (2009)
Publisher: Copernicus Publications
Journal: Biogeosciences
Languages: English
Types: 0038
Subjects: Ecology, QH540-549.5, QE1-996.5, QH501-531, Geology, Life
Wetland biogeochemistry is strongly influenced by water and temperature dynamics, and these interactions are currently poorly represented in ecosystem and climate models. A decline in water table of approximately 30 cm was observed at a wetland in Northern Wisconsin, USA over a period from 2001–2007, which was highly correlated with an increase in daily soil temperature variability. Eddy covariance measurements of carbon dioxide exchange were compared with measured CO<sub>2</sub> fluxes at two nearby forests in order to distinguish wetland effects from regional trends. As wetland water table declined, both ecosystem respiration and ecosystem production increased by over 20% at the wetland, while forest CO<sub>2</sub> fluxes had no significant trends. Net ecosystem exchange of carbon dioxide at the wetland was not correlated with water table, but wetland evapotranspiration decreased substantially as the water table declined. These results suggest that changes in hydrology may not have a large impact on shrub wetland carbon balance over inter-annual time scales due to opposing responses in both ecosystem respiration and productivity.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok