Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kessar, Radha; Malle, Gunter (2013)
Languages: English
Types: Article
Subjects: QA, 20C20 (Primary) 20C33 (Secondary), Mathematics - Group Theory, Mathematics - Representation Theory
This paper has two main results. Firstly, we complete the parametrisation of all p-blocks of finite quasi-simple groups by finding the so-called quasi-isolated blocks of exceptional groups of Lie type for bad primes. This relies on the explicit decomposition of Lusztig induction from suitable Levi subgroups. Our second major result is the proof of one direction of Brauer’s long-standing height zero conjecture on blocks of finite groups, using the reduction by Berger and Knörr to the quasi-simple situation. We also use our result on blocks to verify a conjecture of Malle and Navarro on nilpotent blocks for all quasi-simple groups.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] J.L. Alperin, M. Brou´e, Local methods in block theory. Ann. of Math. 110 (1979), 143-157.
    • [2] M. Aschbacher, R. Kessar, B. Oliver, Fusion Systems in Algebra and Topology. LMS Lecture Notes (391), Cambridge University Press, Cambridge, 2011.
    • [3] T. R. Berger, R. Kno¨rr, On Brauer's height 0 conjecture. Nagoya Math. J. 109 (1988), 109-116.
    • [4] H. Blau, H. Ellers, Brauer's height zero conjecture for central quotients of special linear and special unitary groups. J. Algebra 212 (1999), 591-612.
    • [5] C. Bonnaf´e, Quasi-isolated elements in reductive groups. Comm. Algebra 33 (2005), 2315-2337.
    • [6] C. Bonnaf´e, Sur les caract`eres des groupes r´eductifs finis a centre non connexe : applications aux groupes sp´eciaux lin´eaires et unitaires. Ast´erisque 306 (2006).
    • [7] C. Bonnaf´e, J. Michel, Computational proof of the Mackey formula for q > 2. J. Algebra 327 (2011), 506-526.
    • [8] C. Bonnaf´e, R. Rouquier, Cat´egories d´eriv´ees et vari´et´es de Deligne-Lusztig. Publ. Math. Inst. Hautes E´tudes Sci. No. 97 (2003), 1-59.
    • [9] R. Brauer, Number theoretical investigations on groups of finite order. Pp. 55-62 in: Proceedings of the international symposium on algebraic number theory, Tokyo and Nikko, 1955, Science Council of Japan, Tokyo, 1956.
    • [10] M. Brou´e, G. Malle, J. Michel, Generic blocks of finite reductive groups. Ast´erisque 212 (1993), 7-92.
    • [11] M. Brou´e, J. Michel, Blocs `a groupes de d´efaut ab´eliens des groupes r´eductifs finis. Ast´erisque 212 (1993), 93-117.
    • [12] M. Cabanes, M. Enguehard, On general blocks of finite reductive groups: ordinary characters and defect groups. Rapport de Recherche du LMENS 93-13 (1993).
    • [13] M. Cabanes, M. Enguehard, On unipotent blocks and their ordinary characters. Invent. Math. 117 (1994), 149-164.
    • [14] M. Cabanes, M. Enguehard, On blocks of finite reductive groups and twisted induction. Adv. Math. 145 (1999), 189-229.
    • [15] M. Cabanes, M. Enguehard, Representation Theory of Finite Reductive Groups. Cambridge University Press, Cambridge, 2004.
    • [16] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of Finite Groups. Clarendon Press, Oxford, 1985.
    • [17] R. Wilson et al., The Modular Atlas homepage. http://www.math.rwth-aachen.de/homes /MOC/decomposition/
    • [18] D.I. Deriziotis, G.O. Michler, Character table and blocks of finite simple triality groups 3D4(q). Trans. Amer. Math. Soc. 303 (1987), 39-70.
    • [19] F. Digne, J. Michel, Representations of Finite Groups of Lie Type. LMS Student Texts, 21. Cambridge University Press, Cambridge, 1991.
    • [20] M. Enguehard, Sur les l-blocs unipotents des groupes r´eductifs finis quand l est mauvais. J. Algebra 230 (2000), 334-377.
    • [21] M. Enguehard, Vers une d´ecomposition de Jordan des blocs des groupes r´eductifs finis. J. Algebra 319 (2008), 1035-1115.
    • [22] P. Fong, B. Srinivasan, The blocks of finite general linear and unitary groups. Invent. Math. 69 (1982), 109-153.
    • [23] P. Fong, B. Srinivasan, The blocks of finite classical groups. J. reine angew. Math. 396 (1989), 122-191.
    • [24] M. Geck, Basic sets of Brauer characters of finite groups of Lie type II. J. London Math. Soc. 47 (1993), 255-268.
    • [25] D. Gluck, T. Wolf, Brauer's height conjecture for p-solvable groups. Trans. Amer. Math. Soc. 282 (1984), 137-152.
    • [26] J.-B. Gramain, On a conjecture of G. Malle and G. Navarro on nilpotent blocks. Preprint.
    • [27] G. Hiß, Zerlegungszahlen endlicher Gruppen vom Lie-Typ in nicht-definierender Charakteristik. Habilitationsschrift, Aachen, 1990.
    • [28] R. B. Howlett, Normalizers of parabolic subgroups of reflection groups. J. London Math. Soc. (2) 21 (1980), 62-80.
    • [29] J. E. Humphreys, Defect groups for finite groups of Lie type. Math. Z. 119 (1971), 149-152.
    • [30] R. Kessar, The Solomon system FSol(3) does not occur as fusion system of a 2-block, J. Algebra 296 (2005), 409-425.
    • [31] R. Kessar, S. Koshitani, M. Linckelmann, Conjectures of Alperin and Brou´e for 2-blocks with elementary abelian defect groups of order 8. J. reine angew. Math. (DOI 10.1515/Crelle 2011).
    • [32] P. Landrock, The non-principal 2-blocks of sporadic simple groups. Comm. Algebra 6 (1978), 1865-1891.
    • [33] G. Lusztig, Characters of Reductive Groups over a Finite Field. Annals of Mathematics Studies, 107. Princeton University Press, Princeton, NJ, 1984.
    • [34] G. Lusztig, On the representations of reductive groups with disconnected centre. Ast´erisque 168 (1988), 157-166.
    • [35] G. Malle, Die unipotenten Charaktere von 2F4(q2). Comm. Algebra 18 (1990), 2361-2381.
    • [36] G. Malle, Height 0 characters of finite groups of Lie type. Represent. Theory 11 (2007), 192-220.
    • [37] G. Malle, G. Navarro, Blocks with equal height zero degrees. Trans. Amer. Math. Soc. 363 (2011), 6647-6669.
    • [38] G. Malle, D. Testerman, Linear Algebraic Groups and Finite Groups of Lie Type. Cambridge Studies in Advanced Mathematics, 133, Cambridge University Press, Cambridge, 2011.
    • [39] J. Michel, The GAP-part of the Chevie system. GAP 3-package available for download from http://people.math.jussieu.fr/˜jmichel/chevie/chevie.html
    • [40] J. Mu¨ller, private communication, 2010.
    • [41] M. Murai, Block induction, normal subgroups and characters of height zero. Osaka J. Math. 31 (1994), 9-25.
    • [42] H. Nagao, Y. Tsushima, Representations of finite groups. Academic Press, San Diego, 1987.
    • [43] G. Navarro, P.-H. Tiep, Brauer's height zero conjecture for the 2-blocks of maximal defect. J. reine angew. Math., to appear.
    • [44] J. Olsson, On the p-blocks of symmetric and alternating groups and their covering groups. J. Algebra 128 (1990), 188-213.
    • [45] L. Puig, On the local structure of Morita and Rickard equivalences between Brauer blocks. Progress in Mathematics (178), Birkh¨auser, Basel, 1991.
    • [46] K.-D. Schewe, Bl¨ocke exzeptioneller Chevalley-Gruppen. Dissertation, Bonner Mathematische Schriften, 165. Universit¨at Bonn, 1985.
    • [47] J. Th´evenaz, G-Algebras and Modular Representation Theory. Oxford University Press, New York, 1995.
    • [48] H.N. Ward, On Ree's series of simple groups. Trans. Amer. Math. Soc. 121 (1966), 62-89.
  • No related research data.
  • No similar publications.

Share - Bookmark

Published in

Funded by projects

Cite this article