Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Perez, S.; Casassus, S.; Ménard, F.; Roman, P.; van der Plas, G.; Cieza, L.; Pinte, C.; Christiaens, Valentin; Hales, A. S. (2014)
Languages: English
Types: Article
Subjects: Astrophysics - Solar and Stellar Astrophysics, individual: HD 142527 [stars], Astrophysics - Earth and Planetary Astrophysics, : Aérospatiale, astronomie & astrophysique [Physique, chimie, mathématiques & sciences de la terre], : Space science, astronomy & astrophysics [Physical, chemical, mathematical & earth Sciences], protoplanetary disks

Classified by OpenAIRE into

arxiv: Astrophysics::Galaxy Astrophysics, Astrophysics::Earth and Planetary Astrophysics, Astrophysics::Cosmology and Extragalactic Astrophysics, Astrophysics::Solar and Stellar Astrophysics
Inner cavities and annular gaps in circumstellar disks are possible signposts of giant planet formation. The young star HD 142527 hosts a massive protoplanetary disk with a large cavity that extends up to 140 AU from the central star, as seen in continuum images at infrared and millimeter wavelengths. Estimates of the survival of gas inside disk cavities are needed to discriminate between clearing scenarios. We present a spatially and spectrally resolved carbon monoxide isotopologue 2-1 line of $^12$CO, $^13$CO, and C[SUP]18[/SUP]$O obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). We detect emission coming from inside the dust-depleted cavity in all three isotopologues. Based on our analysis of the gas in the dust cavity, the $^12$CO emission is optically thick, while $^13$CO and C[SUP]18[/SUP]$O emissions are both optically thin. The total mass of residual gas inside the cavity is \~1.5-2 M $_Jup$. We model the gas with an axisymmetric disk model. Our best-fit model shows that the cavity radius is much smaller in CO than it is in millimeter continuum and scattered light observations, with a gas cavity that does not extend beyond 105 AU (at 3$\sigma$). The gap wall at its outer edge is diffuse and smooth in the gas distribution, while in dust continuum it is manifestly sharper. The inclination angle, as estimated from the high velocity channel maps is 28 \plusmn 0.5 deg, higher than in previous estimates, assuming a fix central star mass of 2.2 M $_&sun;$. Peer reviewed
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • ALMA-CONICYT #31120006. C.P. acknowledges funding from the European Commission's 7th Framework Program (contract PERG06-GA-2009-256513) and from Agence Nationale pour la Recherche (ANR) of France under contract ANR-2010-JCJC-0504-01. L.C. acknowledges support from Project ALMA-CONICYT #31120009.
    • McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, Astronomical Data Analysis Software and Systems XVI, 376, 127 O¨berg, K. I., Qi, C., Fogel, J. K. J., et al. 2011, ApJ, 734, 98 Ohashi, N. 2008, Ap&SS, 313, 101
    • Pascucci, I., Sterzik, M., Alexander, R. D., et al. 2011, ApJ, 736, 13 Pinte, C., Me´nard, F., Ducheˆne, G., & Bastien, P. 2006, A&A, 459, 797 Pinilla, P., Birnstiel, T., Ricci, L., et al. 2012, A&A, 538, A114 Quanz, S. P., Avenhaus, H., Buenzli, E., et al. 2013, ApJ, 766, L2 Rameau, J., Chauvin, G., Lagrange, A.-M., et al. 2012, A&A, 546, A24 Rosenfeld, K. A., Qi, C., Andrews, S. M., et al. 2012, ApJ, 757, 129 Rosenfeld, K. A., Chiang, E., & Andrews, S. M. 2014, ApJ, 782, 62 Smith, R. L., Pontoppidan, K. M., Young, E. D., Morris, M. R., & van Dishoeck, E. F. 2009, ApJ, 701, 163
    • Stahl, O., Casassus, S., & Wilson, T. 2008, A&A, 477, 865 Tatulli, E., Benisty, M., Me´nard, F., et al. 2011, A&A, 531, A1 van Boekel, R., Min, M., Leinert, C., et al. 2004, Nature, 432, 479 van Leeuwen, F. 2007, A&A, 474, 653
    • van der Marel, N., van Dishoeck, E. F., Bruderer, S., et al. 2013, Science, 340, 1199
    • van der Plas, G., Casassus, S., Menard, F., et al. 2014, arXiv:1407.1735 Varnie`re, P., Blackman, E. G., Frank, A., & Quillen, A. C. 2006, ApJ, 640, 1110
    • Verhoeff, A. P., Min, M., Pantin, E., et al. 2011, A&A, 528, A91 Vilas-Boas, J. W. S., Myers, P. C., & Fuller, G. A. 2000, ApJ, 532, 1038 Wilson, T. L., & Rood, R. 1994, ARA&A, 32, 191
    • Wilson, T. L., Rohlfs, K., Huumlttemeister, S. 2009, Tools of Radio Astronomy, by Thomas L. Wilson; Kristen Rohlfs and Susanne Hu¨ttemeister. ISBN 978-3-540-85121-9. Published by Springer-Verlag, Berlin, Germany, 2009.,
    • Zhu, Z., Nelson, R. P., Hartmann, L., Espaillat, C., & Calvet, N. 2011, ApJ, 729, 47
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok