LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
N. Ortiz de Adler; A. G. Elias (2008)
Publisher: Copernicus Publications
Journal: Annales Geophysicae
Languages: English
Types: Article
Subjects: Geophysics. Cosmic physics, Q, Science, Physics, QC1-999, QC801-809

Classified by OpenAIRE into

arxiv: Physics::Space Physics
Noon foF2 monthly median values for equinoctial months of solar cycles 20, 21 and 22, were analyzed for 37 worldwide stations. For each solar cycle and for a given Rz, the difference between foF2 in the falling branch of the cycle and the corresponding value of the rising branch is evaluated. The maximum difference, considered as the hysteresis magnitude, varies systematically with geomagnetic latitude. The pattern is similar for every cycle, with greater hysteresis magnitudes for stronger solar cycles. It is positive between 45° S and 45° N, with minimum values at equatorial latitudes and maximum at around 25°–30° on either side of the equator. For latitudes greater than 50° negative values are observed. At around 25°–30° and at high latitudes the hysteresis magnitude reaches 2 MHz for solar cycle with high activity levels, which represents around 20% of foF2. The effects of foF2 hysteresis on the analysis of long-term data sequences is analyzed. In the case of long-term trend analysis, the hysteresis behavior may induce spurious trends as a consequence of the filtering processes applied to foF2 time series previous to trend values estimation. This problem may be solved by considering time series covering several solar cycles.

Share - Bookmark

Download from

Cite this article

Collected from