Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gholamreza Kavoosi; Sadegh Balotf; Homeira Eshghi; Hasan Hasani (2014)
Publisher: Shiraz University Press
Journal: Molecular Biology Research Communications
Languages: English
Types: Article
Subjects: Triticum aestivum; nitrate; Potassium nitrate; Nitrate reductase, Q, Science, Biology (General), QH301-705.5

Classified by OpenAIRE into

mesheuropmc: food and beverages
Nitrate is one of the major sources of nitrogen for the growth of plants. It is taken up by plant roots and transported to the leaves where it is reduced to nitrite in the. The main objective of this research was to investigate stimulatory effects of sodium nitrate, potassium nitrate, ammonia and urea on the production/generation of the nitrate reductase mRNA in Triticum aestivum plants. The plants were grown in standard nutrient solution for 21 days and then starved in a media without nitrate for seven days. Starved plants were stimulated with various concentrations of sodium nitrate, potassium nitrate, ammonia and urea, and the expression of nitrate reductase mRNA was analyzed by real-time PCR. Our results indicated that starvation caused significant decrease in the production of nitrate reductase mRNA in the plant leaf. Sodium and potassium nitrate were capable of restoring the production of nitrate mRNA in a dose-dependent manner, since 50 mM of each produced the highest level of the mRNA. The stimulatory effect of potassium nitrate was higher than sodium nitrate, while ammonia and urea did not show such activity. At low concentrations, sodium nitrate and potassium nitrate caused significant increase in the nitrate/nitrite mRNA production, whereas high concentrations of these salts suppressed the expression of this gene considerably.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from