LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
B. M. Weon; J. H. Je; C. Poulard (2011)
Publisher: AIP Publishing LLC
Journal: AIP Advances
Languages: English
Types: Article
Subjects: Physics, QC1-999

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics, Physics::Fluid Dynamics
Identifiers:doi:10.1063/1.3554333
Water vapor is lighter than air; this can enhance water evaporation by triggering vapor convection but there is little evidence. We directly visualize evaporation of nanoliter (2 to 700 nL) water droplets resting on silicon wafer in calm air using a high-resolution dual X-ray imaging method. Temporal evolutions of contact radius and contact angle reveal that evaporation rate linearly changes with surface area, indicating convective (instead of diffusive) evaporation in nanoliter water droplets. This suggests that convection of water vapor would enhance water evaporation at nanoliter scales, for instance, on microdroplets or inside nanochannels.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from