Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
E. A. M. Ribeiro; G. Rodrigues Filho; N. S. Rozeno; J. M. B. A. Nogueira; M. A. Resende; J. P. Thompson Junior; J. G. Vieira; S. C. Canobre; F. A. Amaral (2017)
Publisher: Budapest University of Technology
Journal: eXPRESS Polymer Letters
Languages: English
Types: Article
Subjects: Biodegradable polymers, dual-flocculation, biodiesel wastewater, tannin, cellulose acetate sulfate, Materials of engineering and construction. Mechanics of materials, TA401-492, Chemical technology, TP1-1185
Biodiesel wastewater generally contains high levels of oils, soaps and glycerol residues. This needs wastewater treatment. In this study, the biodiesel wastewater treatment was tested (industrial wastewater (EFID) and laboratory wastewater (EFLB) from biodiesel) by performing flocculation and dual-flocculation with renewable polymers. Tannin and cationic hemicellulose (CH) were used as cationic flocculant, and cellulose acetate sulfate (CAS) was used as an anionic flocculant. Polyacrylamide (PAM) was used as a reference anionic flocculant for result efficiencies analysis obtained with CAS (renewable source flocculant). The treatment efficacy in wastewater was evaluated by: turbidity removal, sludge volume formed, chemical oxygen demand (COD) and total suspended solids (TSS). The obtained sludge was studied using thermogravimetric analysis (TG). The dual-flocculation application condition of the 25% proportion of tannin (T) and 75% proportion of cationic hemicelluloses (i.e., T25/CH75) showed EFLB turbidity removal of 89.1% and 89.5% for CAS and PAM additions respectively, and for EFID of 67% and 41% for CAS and PAM additions respectively. The dual-flocculation performance suggested that the polyelectrolytes obtained from renewable sources can be used for treating biodiesel wastewater.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from