LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Baharodimehr, A.; Abolfazl Suratgar, A.; Sadeghi, H. (2009)
Publisher: UNAM, Centro de Ciencias Aplicadas y Desarrollo Tecnológico
Languages: English
Types: Unknown
Subjects: neural network., Technology (General), red neuronal, Acelerómetro, rigidez cúbica, T, cubic stiffness, Accelerometer, Technology, T1-995, MEMS, neural network
This paper presents a nonlinear model for a capacitive microelectromechanical accelerometer (MEMA). System parameters of the accelerometer are developed using the effect of cubic term of the folded-flexure spring. To solve this equation, we use the FEA method. The neural network (NN) uses the Levenberg-Marquardt (LM) method for training the system to have a more accurate response. The designed NN can identify and predict the displacement of the movable mass of accelerometer. The simulation results are very promising. Este trabajo presenta un modelo no lineal para un acelerómetro microelectromecánico de tipo capacitivo (MEMA). Asimismo, en él se desarrollan parámetros de sistema de el acelerómetro utilizando el efecto del término cúbico del resorte de flexion plegado. Para resolver esta ecuación, usamos el método FEA. La red neuronal (RN) usa el método Levenberg-Marquardt (LM) para entrenar al sistema a fin de que tenga una respuesta más exacta. La RN diseñada puede identificar y predecir el desplazamiento de la masa móvil del acelerómetro. Los resultados de la simulación son muy prometedores.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article