Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Alean, Jader D; Gutiérrez, Gail A; Chejne, Farid; Bastidas, Marlon J (2009)
Publisher: Centro de Información Tecnológica
Languages: Spanish
Types: Unknown
Subjects: transferencia de calor y materia, modeling, DOAJ:Technology and Engineering, simulation, Q1-390, Technology, simulación, Technology (General), Q, humidification, DOAJ:Science General, DOAJ:Science (General), T, Science (General), Science, torre de enfriamiento, humidificación, modelado, DOAJ:Technology (General), cooling tower, heat and mass transfer, T1-995
El objetivo del trabajo es modelar y simular una torre de enfriamiento mecánica forzada a escala piloto. Las variables físicas se correlacionaron a partir de la transferencia de calor y materia y los resultados de la simulación son analizados mediante graficas que muestran la variación de la humedad, flujo de agua, calor latente, calor sensible, calor total, temperatura del agua y del aire. El coeficiente de transferencia de materia se obtuvo a partir de los datos experimentales y la solución numérica del modelo se obtuvo con el método Runge-Kutta en Matlab. La verificación de los resultados fue realizada, comparando las curvas simuladas con las curvas experimentales. Se concluye que la cercanía entre las curvas depende del coeficiente de transferencia de materia.
The objective of this work was the modeling and simulation of a pilot-scale mechanical enforced cooling tower. The physical variables were correlated from the heat and mass transfer and the simulation results were analyzed using graphs showing the change in humidity, water flow, latent heat, heat sensitive, total heat, water temperature and air. The mass transfer coefficient was obtained from experimental data and the numerical solution of the model was obtained using Runge-Kutta method in Matlab. Comparison between stimulation results and experimental data was done. It is concluded that the shape of the curves and the deviations of the simulated results depend on the mass transfer coefficient.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article