LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Unlersen, Muhammed Fahri; Sabanci, Kadir (2016)
Publisher: Advanced Technology and Science (ATScience)
Journal: International Journal of Intelligent Systems and Applications in Engineering
Languages: English
Types: Article
Subjects: k - Nearest Neighbor,Multilayer Perceptron Neural Network; Weka; Classification; Remote Sensing, k - Nearest Neighbor; Multilayer Perceptron Neural Network; Weka; Classification; Remote Sensing
In this study, the Japanese Oak and Pine Wilt in forested areas of Japan was classified into two group as diseased trees and all other land cover area according to the 6 attributes in the spectral data set of the forest. The Wilt Data Set which was obtained from UCI machine learning repository database was used. Weka (Waikato Environment for Knowledge Analysis) software was used for classification of areas in the forests. The classification success rates and error values were calculated and presented for classification data mining algorithms just as Multilayer Perceptron (MLP) and k-Nearest Neighbor (kNN). In MLP neural networks the classification performance for various numbers of neurons in the hidden layer was presented. The highest success rate was obtained as 86.4% when the number of neurons in the hidden layer was 10. The classification performance of kNN method was calculated for various counts of neighborhood. The highest success rate was obtained as 72% when the count of neighborhood number was 2.
  • No references.
  • No related research data.
  • No similar publications.