Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sperna Weiland, F.C. (2011)
Publisher: Utrecht University
Languages: English
Types: Doctoral thesis
Multiple hydrological impact studies have assessed the hydrological consequences of climate change. Yet, especially in applied water management studies, often only one or a few GCMs are used and limited attention is given to the uncertainties present in future climate projections. Major investments for the implementation of adaptation measures are based on the outcomes of these overconfident and possibly biased assessments. In this thesis an extensive analysis of the inherent uncertainties present in the modeling chain of hydrological impact studies is conducted. In addition, future global hydrological changes are derived and methods for the interpretation of the accompanying uncertainties are explored. Uncertainty analysis The first step of this study evaluates the influence of PCR-GLOBWB parameter and forcing data uncertainty on modeled discharge estimates. To this end PCR-GLOBWB was forced with three different forcing datasets and 250 different parameter combinations. The results show that, with simple Latin Hypercube sampling, parameter combinations can be obtained that outperform the default model parameterization. Yet, optimal parameter estimates highly depend on the forcing dataset used. This indicates that a hydrological model forced with often biased GCM datasets is preferably calibrated for each dataset independently. Otherwise, calibration attempts should be limited and parameter values could best be obtained from available global datasets, as has been done within this study. In a second step the global hydrological model PCR-GLOBWB is forced with meteorological datasets from an ensemble 12 GCMs. The resulting annual average discharge cycles are compared with discharge observations. This comparison reveals large variations between GCMs and large deviations of GCM derived discharge from discharge observations. The analysis is extended with the evaluation of the usability of GCM runoff for hydrological studies. The results indicate that especially for large catchments full hydrological modeling outperforms the use of GCM-generated runoff. Runoff routing and correct representation of subsurface hydrological processes, as present in hydrological models, introduce realistic flow velocities and consequently a correct reproduction of discharge extremes. Future hydrological impacts of climate change To asses future runoff changes PCR-GLOBWB is forced with datasets from 12 GCMs for the IPCC A1B scenario. The obtained change projections diverge widely. Yet, when discharge change is calculated relative to discharge amounts, obtained for the 20th century control experiment for each individual GCM, ensemble consistent and significant changes can be found. By 2100 runoff decreases are projected for southern Europe, southern Australia and the south and north of Africa and runoff increases are projected for sub-Arctic and Monsoon influenced regions. In a final step several performance based GCM weighting and selection methods have been investigated. These methods are used to derive weighted average future runoff changes from the ensemble of 12 GCMs and to quantify the accompanying weighted uncertainty ranges. The method which considered inter-model similarity, for both the current and future climate, performed best.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • gische Zeitschrift, 9(1), pp. 49-57.
    • GRDC (2004), Long term mean annual freshwater surface water fluxes into the world oceans; comparisons of GRDC freshwater flux estimate with litera - ture. http://grdc.bafg.de/servlet/is/7083.
    • GRDC (2007), Major river basins of the world. Global Runoff Data Centre, D - 56002, Federal Institute of Hydrology (BfG), Koblenz, Germany.
    • Gregory, K. J. (1976), Drainage networks and climate. Chapter 10 in: Geomorphology and climate (e.d. by E. Derbyshire). John Wiley, London.
    • Guardian (2011), Severe drought causes hunger for 10 million in west Africa. http://www.guardian.co.uk/environment/2010/jun/03/drought-hunger-west-africa, retrieved July 14, 2011.
    • Gupta, H.V., S. Sorooshian & P. O. Yapo (1998), Toward improved calibration of hydrological models: Multiple and noncommensurable measures of information. Water Resources Research 34, pp. 751-763.
    • Haan, C.T., D. E. Storm, T. Al-Issa, S. Prabhu, G. J. Sabbagh & D. R. Edwards (1998), Effect of parameter distribution on uncertainty analysis of hydrologic models. Transactions of the ASAE 41(1), pp. 65-70.
    • Haerter, J. O., S. Hagemann, C. Moseley & C. Piani (2010), Climate model bias correction and the role of timescales. Hydrology and Earth System Sciences 15, pp. 1065-1079, doi: 10.5194/hessd-7-7863-2010.
    • Hagemann, S. (2002), An improved land surface parameter data set for global and regional climate models, Max-Planck-Institute for Meteorology, Report 336, Hamburg.
    • Hagemann, S. & L. D. Gates (2003), Improving a subgrid runoff parameterization scheme for climate models by the use of high resolution data derived from satellite observations. Climate Dynamics 21, pp. 349-359, doi: 10.1107/s00382-003-0349-x.
    • Hagemann, S., K. Arpe & L. Bengtsson (2005), Validation of the hydrological cycle of ERA-40. Reports on earth system science, Max Planck Institute, Hamburg, Germany.
    • Hagemann, S., K. Arpe & E. Roeckner (2006), Evaluation of the hydrological cycle in the ECHAM5 model. Journal of Climate 19, pp. 3810-3827, doi: 10.1175/JCLI3831.1.
    • Hagemann, S., H. Göttel, D. Jacob, P. Lorenz & E. Roeckner (2009), Improved regional scale processes reflected in projected hydrological changes over large European catchments. Climate Dynamics 32, pp. 767-781, doi:10.1007/s00382-008-0403-9.
    • Hargreaves, G. H. & Z. A. Samani (1985), Reference crop evapotranspiration Johns, T. C. (2009), Ensembles stream2 MetO-HC-HadGEM2AO SRA1B run1, daily values. World Data Center for Climate. CERA-DB “Ensembles2_ HadGEM2_SRA1B_1_D”.http://cera-www.dkrz.de/WDCC/ui/ compact.jsp?acronym= ENSEMBLES2 HADGEM2_SRA1B_1_D Johnson, F. & A. Sharma (2009), Measurement of GCM skill in predicting variables relevant for hydroclimatological assessments. Journal of Climate 22 (16), pp. 4373-4382, doi:10.1175/2009JCLI2681.1.
    • Kallache, M., M. Vrac, P. Naveau & P.-A. Michelangeli (2011), Nonstationary probabilistic downscaling of extreme precipitation. Journal of Geophysical Research 116, D05113, doi:10.1029/2010JD014892.
    • Kalnay, E. & Coauthors (1996), The NCEP/NCAR 40-year reanalysis project, Bulletin of the American Meteorological Society 77, pp. 437-470.
    • Kay, A. L. & H. N. Davies (2008), Calculating potential evaporation from climate model data: A source of uncertainty for hydrological climate change impacts. Journal of Hydrology 358, pp. 221-239, doi: 10.1016/j.jhydrol.2008.06.005.
    • Kay, A. L., H. N. Davies, V. A. Bell, & R.G. Jones (2009), Comparison of uncertainty sources for climate change impacts: flood frequency in England. Climatic Change 92, pp. 41-63, doi: 10.1007/s10584-008-9471-4.
    • Kingston, D. G., M,. C. Todd, R. G. Taylor & J. R. Thompson (2009), Uncertainty in the estimation of potential evapotranspiration under climate change. Geophysical Research Letters 36, L20403, doi:10.1029/2009GL040267.
    • Kite, G. (1998), Land surface parameterizations of GCMs and macroscale models. Journal of the American Water Resources Association 34(6), pp. 1247- 1254.
    • Korzun, V. I., A. A. Sokolov, M. I. Budyko, K. P. Voskresensky, G. P. Kalinin, A. A. Konoplyantsev, E. S. Korotkevich & M. I. L'vovitch (1978), World Water Balance and Water Resources of the Earth. UNESCO, 663 p.
    • Kraijenhoff van de Leur, D. (1958), A study of non-steady groundwater flow with special reference to a reservoir coefficient, De Ingenieur 70, pp. 87- 94.
    • Krishnamurti, T. N., C. M. Kishtawal, T. LaRow, D. Bachiochi, Z. Zhang, C. E. Williford, S. Gadgil & S. Surendran (1999), Improved forecast skill of weather and seasonal climate forecasts from multimodel superensemble. Science 285, pp. 1548-1550.
    • Kuchment, L.S. (2004), The hydrological cycle and human impact on it. In Water Resources Management, [Eds. Arjen Y. Hoekstra, and Hubert H.G. Savenije], in Encyclopedia of Life Support Systems (EOLSS), Developed Mahanama, S. P. P. & R. D. Koster (2005), AGCM biases in evaporation regime: Impacts on soil moisture memory and land-atmosphere feedback. Journal of Hydrometeorology 6, pp. 656-669, doi: 10.1175/JHM446.1.
    • Manabe, S., P. C. D. Milly & R. D. Wetherald (2004), Simulated long-term changes in river discharge and soil moisture due to global warming. Hydrological Sciences Journal 49(4), pp. 625-642, doi: 10.1623/hysj.49.4.625.54429.
    • Martinec, J. (1975), Snowmelt - runoff model for stream flow forecasts. Nordic Hydrology 6(3), pp. 145-154, doi:10.2166/nh.1975.010.
    • Matalas N. C. & W. B. Langbein (1962), Information content of the mean. Journal of Geophysical Research 67(9), pp. 3441-3448.
    • Maurer, E. P., H. G. Hidalgo, T. Das, M. D. Dettinger & D. R. Cayan (2010), The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrology and Earth System Sciences 14, pp. 1125-1138, doi:10.5194/hess-14-1125-2010.
    • McGuffie, K. & A. Henderson-Sellers (2005), A climate modelling primer. John Wiley and Sons, 280 p.
    • McMillan, H., J. Freer, F. Pappenberger, T. Krueger & M. Clark (2010), Impacts of uncertain river flow data on rainfall-runoff model calibration and discharge predictions. Hydrological Processes 24, pp. 1270-1284, doi: 10.1002/hyp.7587.
    • Meehl, G. A. & J. M. Arblaster (2003), Mechanisms for projected future changes in south Asian monsoon precipitation. Climate Dynamics 21, pp. 659-675. doi: 10.1007/s00382-003-0343-3.
    • Meehl, G. A., F. Zwiers, J. Evans, T. Knutson, L. Mearns, & P. Whetton (2000), Trends in extreme weather and climate events: Issues related to modeling extremes in projections of future climate change. Bulletin of the American Meteorological Society 81(3), pp. 413-416.
    • Michelangeli, P.-A., M. Vrac, & H. Loukos (2009), Probabilistic downscaling approaches: application to wind cumulative distribution functions. Geophysical Research Letters 36, L11708, doi:10.1029/2009GL038401.
    • Miller, J. R., G. L. Russell & G. Caliri (1993), Continental-scale river flow in cli - mate models. Journal of Climate 7, pp. 914-928.
    • Milly, P. C. D., K. A. Dunne & A.V. Vecchia (2005), Global pattern of trends in streamflow and water availability in a changing climate. Nature 438(17), pp. 347-350, doi:10.1038/nature04312.
    • Min, S. K. & A. Hense (2007), Hierarchical evaluation of IPCC AR4 coupled climate models with systematic consideration of model uncertainties. Climate Dynamics 29, 8530868, doi: 10.1007/s00382-007-0269-2.
    • Mitchell, T. D. & P. D. Jones (2005), An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology 25, pp. 693-712.
    • Monteith, J. L. (1965), Evaporation and environment. Symposium Society for Experimental Biology 19, pp. 205-234.
    • Moss, R. H., J. A. Edmonds, K. A. Hibbard, M. R. Manning, S. K. Rose, D. P. van Vuuren, T. R. Carter, S. Emori, M. Kainuma, T. Kram, G. A. Meehl, J. F. B. Mitchell, N. Nakicenovic, K. Riahi, S. J. Smith, R. J. Stouffer, A. M. Thomson, J. P. Weyant & T. J. Wilbanks (2010), The next generation of scenarios for climate change research and assessment. Nature 463, pp. 747-756, doi:10.1038/nature08823.
    • Muleta, M. L. & J. W. Nicklow (2005), Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. Journal of Hydrology 306, pp. 127-145.
    • Murphy J. M., D. M. H. Sexton, D. N. Barnett, G.S. Jones, M.J. Webb, M. Collins & D.A. Stainforth (2004), Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430, pp. 768-772, doi:10.1038/nature02771.
    • Nash, J. E. & J. V. Sutcliffe (1970), River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology 10 (3), pp. 282-290.
    • New, M., M. Hulme & P. Jones (1999), Representing Twentieth-Century spacetime climate variability. Part 1: Development of a 1961-90 mean monthly terrestrial climatology. Journal of Climate 12(3), pp. 829-856, doi: 10.1175/1520-0442(1999)012.
    • New, M., M. Hulme, M. & P. Jones (2000), Representing Twentieth-Century space-time climate variability. Part II: Development of 1901-96 monthly grids of terrestrial surface climate. Journal of Climate 13, pp. 2217-2238, doi: 10.1175/1520-0442(2000)013.
    • Nijssen, B., G. M. O'Donnel & D. P. Lettenmaier (2001), Predicting the discharge of global rivers. Journal of climate 14 (15), pp. 3307-3323, doi: 10.1175/1520-0442(2001)014.
    • Nohara, D., A. Kitoh, M. Hosaka & T. Oki (2006), Impact of climate change on river discharge projected by multimodel ensemble. Journal of Hydrometeorology 7, pp. 1076-1089.
    • Oki, T. & Y.C. Sud (1998), Design of total runoff integrating pathways (TRIP)- A global river channel network. Earth Interactions 2, pp. 1-36.
    • Oki, T., Y. Agata, S. Kanae, T. Saruhashi, D. Yang & K. Musiake (2001), Globling Basin of south-east Australia - the effect of sampling model results based on performance. Climatic Change 102, pp. 377-393, doi: 10.1007/ s10584-009-9757-1.
    • Sorooshian, S. & J. A. Dracup (1980), Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: correlated and heteroscedastic error cases. Water Resources Research 16, pp. 430-442.
    • Sperna Weiland, F. C., L. P. H. van Beek, J. C. J. Kwadijk & M. F. P. Bierkens (2010). The ability of a GCM-forced hydrological model to reproduce global discharge variability. Hydrology and Earth System Sciences 14, pp. 1595-1621, doi:10.5194/hess-14-1595-2010.
    • Sperna Weiland, F.C., Tisseuil C., Dürr, H., Vrac, M. and Van Beek, L.P.H. (2011a), Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data. Hydrology and Earth System Sciences Discussions 8, pp. 7355-7398, doi:10.5194/hessd-8-7355-2011.
    • Sperna Weiland, F. C., L. P. H. van Beek, J. C. J. Kwadijk & M. F. P. Bierkens (2011b), On the suitability of GCM runoff fields for river discharge mod - eling; a case study using model output from HadGEM2 and ECHAM5. Journal of Hydrometeorology, in press.
    • Sperna Weiland, F. C., L. P. H. van Beek, J. C. J Kwadijk & M.F.P. Bierkens (2011c), Global pattern of change in runoff regimes for 2100. Climatic Change, under review.
    • Strzepek, K. M. & D. N. Yates (1997), Climate change impacts on the hydrologic resources of Europe: a simplified continental scale analysis. Climatic Change 36, pp. 79-92.
    • Sutanudjaja, E. H., L. P. H. Van Beek, S. M. de Jong, F. C. van Geer, & M. F. P. Bierkens (2011), Large-scale groundwater modeling using global datasets: a test case for the Rhine-Meuse basin. Hydrology and Earth System Sciences Discussions 8, pp. 2555-2608, doi:10.5194/hessd-8-2555-2011.
    • Taylor, K. E. (2001), Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research 106, pp. 7183-7192, doi:10.1029/ 2000JD900719.
    • Tebaldi, D. & R. Knutti (2007), The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A. 365, pp. 2053-2075, doi:10.1098/rsta.2007.2076.
    • Tebaldi, C., R. L. Smith, D. Nychka & L. O. Mearns (2004), Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensemble. Journal of Climate 18, pp. 1524- 1540, doi:
    • Te Linde, A. H., J. C. J. H. Aerts, A. M. R. Bakker & J. C. J. Kwadijk (2010), Simulating low probability peak discharges for the Rhine basin using resampled climate modeling data. Water Resources Research 46, W03512, doi:10.1029/2009WR007707.
    • Trenberth, K. E., A. Dai, R. M. Rasmussen & D. B. Parsons (2003), The changing character of precipitation. Bulletin of the American Meteorological Society 84, pp. 1205-1217, DOI: 10.1175/BAMS-84-9-1205.
    • Troccoli, A. & P. Kållberg (2004), Precipitation correction in the ERA-40 reanalysis. ERA-40 Project Rep. Series 13, ECMWF, Reading, UK, 6 p.
    • UN (2006), 2nd UN World Water Development Report: WWDRII data download page. http://wwdrii.sr.unh.edu/download.html.
    • USA today (2011), Mississippi flood damage could reach billions. http://www. usatoday.com/money/economy/2011-05-10-flood-impact_n.htm, re - trieved June 24, 2011.
    • U.S. Global Change Research Program (2008), http://www.climas.arizona.edu/, retrieved June 24, 2011.
    • Uppala, S. M. & Coauthors (2005), The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society 131, pp. 2961-3012.
    • Van Beek, L. P. H. (2008), Forcing PCR-GLOBWB with CRU meteorological data. Utrecht University, Utrecht, Netherlands, available at: http://vanbeek.geo.uu.nl/suppinfo/vanbeek2008.pdf.
    • Van Beek, L. P. H. & M. F. P. Bierkens (2009), The global hydrological model PCR-GLOBWB: Conceptualization, parameterization and verification. Report Department of Physical Geography, Utrecht University, Utrecht, Netherlands, available at: http://vanbeek.geo.uu.nl/suppinfo/vanbeekbierkens2009.pdf.
    • Van Beek, L. P. H., Y. Wada & M. F. P Bierkens (2011), Global monthly water stress: I. Water balance and water availability. Water Resources Research 47, W07517, doi:10.1029/2010WR009791.
    • Van den Hurk, B., M. Hirschi, C. Schär, G. Lenderink, E. van Meijgaard, A. van Ulden, B. Rockler, S. Hagemann, P. Graham, E. Kjellström & R. Jones (2004), Soil control on runoff response to climate change in regonal climate model simulations. Journal of Climate 18, pp. 3536-3551, doi: 10.1175/JCLI3471.1.
    • Van Soesbergen, A. J. J. & M. Mulligan (2010), Modelling climate change impacts on water resources of global dams. Journal of Hydrology Conference, Octobre 2010, San Diego. doi:10.1029/2005WR004838.
    • Vrugt, J. A., H. V. Gupta, W. Bouten & S. Sorooshian (2003), A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrological model parameters. Water Resources Research 39 (8), 1201, doi:10.1029/2002WR001642.
    • Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten & J. M. Verstraten (2005), Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation. Water Resources Research 41, W01017, doi:10.1029/2004WR003059.
    • Vrugt, J. A., C. J. F. ter Braak, M. P. Clark, J. M. Hyman & B. A. Robinson (2008), Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resources Research 44, W00B09, doi:10.1029/2007WR006720.
    • Vrugt, J. A., C. J. F. ter Braak, C. G. H. Diks, B. A. Robinson, J. M. Hyman & D. Higdon (2009), Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. International Journal of Nonlinear Sciences and Numerical Simulation 10(3), pp. 273-290.
    • Wada, Y., L. P. H. van Beek, D. Viviroli, H. Dürr, R. Weingartner & M. F. P. Bierkens (2008), Water stress over the year: Quantitative analysis of seasonality and severity on a global scale. MSc Thesis, University Utrecht, Utrecht, Netherlands, available at: http://igitur-archive.library.uu.nl/student-theses/2010-0308-200229/UUindex.html.
    • Wada, Y., L. P. H. van Beek, C. M. van Kempen, J. W. T. M. Reckman, S. Vasak & M. F. P. Bierkens (2010), Global depletion of groundwater resources. Geophysical Research Letters 37, L20402, doi:10.1029/2010GL044571.
    • Wada, Y., L. P. H. van Beek, D. Viviroli, H. H. Dürr, R. Weingartner & M. F. P. Bierkens (2011), Global monthly water stress: II. Water demand and severity of water stress. Water Resources Research 47, W07518, doi:10.1029/2010WR009792.
    • Weiβ, M. & L. Menzel (2008), A global comparison of four potential evapotranspiration equations and their relevance to stream flow modelling in semiarid environments. Advances in Geosciences 18, pp. 15-23.
    • Wesseling, C.G., D. Karssenberg, W. P. A. van Deursen & P. A. Burrough (1996), Integrating dynamic environmental models in GIS: the development of a Dynamic Modelling language. Transactions in GIS 1, pp. 40-48.
    • Widén-Nilsson, E., S. Halldin & C.-Y. Xu (2007), Global water balance modelling with WASMOD-M: parameter estimation and regionalization. Journal Weerts, A. H., J. Schellekens & F. C. Sperna Weiland (2010), Real-Time geospatial data handling and forecasting: Examples from Delft-FEWS forecasting platform/system. IEEE Selected topics in applied earth observations and remote sensing 3 (3), pp. 386-394, doi: 10.1109/JSTARS.2010.2046882.
    • Sperna Weiland, F. C., L. P. H. van Beek, J. C. J. Kwadijk & M. F. P. Bierkens (2010), Interpreting global hydrological changes from climate model projections. Oral presentation, Conference of the Global Catchment Initiative, Bonn.
    • Sperna Weiland, F. C., L. P. H. van Beek, J. C. J. Kwadijk & M. F. P. Bierkens (2010), Translating multi-GCM derived future discharge projections into information suitable for water management. Oral presentation, Conference of the journal of hydrology, San Diego.
    • Sperna Weiland, F. C., L. P. H. van Beek, J. C. J. Kwadijk & M. F. P. Bierkens (2010), Global scale impacts of climate change on hydrological regimes. Poster presentation, EGU General Assembly 2010, Vienna.
    • Sperna Weiland, F. C., L. P. H. van Beek, J. C. J. Kwadijk & M. F. P. Bierkens (2009), Modelling hydrological effects of climate change on a global scale. Oral presentation, EGU General Assembly 2009, Vienna.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from