LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sathya, Ajay Suresha; Sopasakis, Pantelis; Van Parys, Ruben; Themelis, Andreas; Pipeleers, Goele; Patrinos, Panos (2018)
Languages: English
Types: Conference object
Subjects: Obstacle avoidance, Nonlinear model pre- dictive control, Embedded optimization

Classified by OpenAIRE into

arxiv: Computer Science::Robotics
We employ the proximal averaged Newton-type method for optimal control (PANOC) to solve obstacle avoidance problems in real time. We introduce a novel modeling framework for obstacle avoidance which allows us to easily account for generic, possibly nonconvex, obstacles involving polytopes, ellipsoids, semialgebraic sets and generic sets described by a set of nonlinear inequalities. PANOC is particularly well-suited for embedded applications as it involves simple steps, its implementation comes with a low memory footprint and its fast convergence meets the tight runtime requirements of fast dynamical systems one encounters in modern mechatronics and robotics. The proposed obstacle avoidance scheme is tested on a lab-scale autonomous vehicle.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Collected from