LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rusnák, Vladimír; Rusnáková, Soňa; Fojtl, Ladislav; Žaludek, Milan; Čapka, Alexander (2015)
Publisher: Inštitut za kovinske materiale in tehnologije
Languages: English
Types: Article
Subjects:
Composite materials used in the transport industry and also in other sectors must have a certain degree of flame resistance. For this purpose, commonly used flame retardants are based on halogen compounds in the liquid state or aluminum hydroxide in the solid state. Solid flame retardants have a negative effect on the processing and mechanical properties. Low viscosity and rapid wettability of fibers are very important, especially in an resin transfer molding (RTM) process. Therefore, a new advanced matrix system based on phosphorus flame retardants was developed. The flame resistance and mechanical properties of the composite materials produced from the new resin system were tested. Furthermore, the processing parameters and tests are described in the article. Web of Science 49 5 824 821
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article