LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Haider, Sajjad; Pang, Kar Mun; Ivarsson, Anders; Schramm, Jesper (2013)
Publisher: Conseil International des Machines a Combustion
Languages: English
Types: Contribution for newspaper or weekly magazine
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Chemical Physics, Physics::Fluid Dynamics
This paper presents the computational fluid dynamics modelling of a laminar premixed flame. A specific solver named ’rareLTSFoam’ is developed using OpenFOAM ® code. The solver is used to simulate experimental stoichiometric and rich laminar premixed flames. The modelling is carried out for thermal flow and combusting flow cases. The results show that without including radiation modelling, the predicted flame temperature is higher than the measured values. P1 radiation Model is used with sub-models for absorption and emission coefficients. The model using constant values for the absorption and emission coefficients gave good agreement with measurements for the regions close to burner outlet. However, the weighted Sum of Gray Gas model (WSGGM) reasonably predicts the flame temperature as the flame height about the burner outlet increases.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article