Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Arı, İsmail; Ölmezoğulları, E.; Çelebi, Ö. F. (2012)
Publisher: IEEE
Languages: English
Types: Conference object
Subjects: Apriori, Association rule mining, Complex event processing, Correlation, Data streams, FP-growth, Stream mining
Due to copyright restrictions, the access to the full text of this article is only available via subscription. Due to prevalent use of sensors and network monitoring tools, big volumes of data or “big data” today traverse the enterprise data processing pipelines in a streaming fashion. While some companies prefer to deploy their data processing infrastructures and services as private clouds, others completely outsource these services to public clouds. In either case, attempting to store the data first for subsequent analysis creates additional resource costs and unwanted delays in obtaining actionable information. As a result, enterprises increasingly employ data or event stream processing systems and further want to extend them with complex online analytic and mining capabilities. In this paper, we present implementation details for doing both correlation analysis and association rule mining (ARM) over streams. Specifically, we implement Pearson-Product Moment Correlation for analytics and Apriori & FPGrowth algorithms for stream mining inside a popular event stream processing engine called Esper. As a unique contribution, we conduct experiments and present performance results of these new tools with different tumbling and sliding time-windows over two different stream types: one for moving bus trajectories and another for web logs from a music site. We find that while tumbling windows may be more preferable for performance in certain applications, sliding windows can provide additional benefits with rule mining. We hope that our findings can shed light on the design of other cloud analytics systems. Avea Labs ; TÜBİTAK ; European Commission ; IBM Shared University Research Program
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Funded by projects


Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok