LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zamani, M. A.; Öztop, Erhan (2015)
Publisher: IEEE
Languages: English
Types: Conference object
Subjects: Human-robot interaction, Skill transfer, Humanin-the-loop
Due to copyright restrictions, the access to the full text of this article is only available via subscription. In this paper, we propose and implement a human-in-the loop robot skill synthesis framework that involves simultaneous adaptation of the human and the robot. In this framework, the human demonstrator learns to control the robot in real-time to make it perform a given task. At the same time, the robot learns from the human guided control creating a non-trivial coupled dynamical system. The research question we address is how this system can be tuned to facilitate faster skill transfer or improve the performance level of the transferred skill. In the current paper we report our initial work for the latter. At the beginning of the skill transfer session, the human demonstrator controls the robot exclusively as in teleoperation. As the task performance improves the robot takes increasingly more share in control, eventually reaching full autonomy. The proposed framework is implemented and shown to work on a physical cart-pole setup. To assess whether simultaneous learning has advantage over the standard sequential learning (where the robot learns from the human observation but does not interfere with the control) experiments with two groups of subjects were performed. The results indicate that the final autonomous controller obtained via simultaneous learning has a higher performance measured as the average deviation from the upright posture of the pole. European Commission
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Funded by projects

  • EC | CONVERGE

Cite this article

Collected from