Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Karagöz, A.; Craciun, V.; Başım, Gül Bahar (2015)
Publisher: The Electrochemical Society
Languages: English
Types: Article
Subjects: Tungsten-oxide, Oxidation, Slurries
This study focuses on the characterization of nano-scale metal oxide films for chemical mechanical planarization (CMP) applications. The protective nature of the self-grown metal oxide layers in the CMP slurry environment enable topographic selectivity required for metallization of interconnects. Tungsten was selected as the model metal film to study the formation and characteristics of the metal oxide nano-layers since tungsten CMP is very well-established in conventional semiconductor manufacturing. The tungsten oxide nano-films were characterized for thickness, density and surface topography in addition to evaluation of their protective nature by calculation of the Pilling-Bedworth (P-B) ratios. It was observed that in addition to controlling the self-protective characteristics, the oxidizer concentration also affects the surface structure of the metal oxide films resulting in significant changes in the CMP process performance in terms of material removal rates and surface finish with a sweet-spot detected at 0.075 M H2O2 concentration. European Commission
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok