LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Karagöz, A.; Başım, Gül Bahar (2015)
Publisher: The Electrochemical Society
Languages: English
Types: Article
Subjects: Chemical mechanical planarization, Germanium/silica selectivity, Shallow trench isolation, Surface active agents
Due to copyright restrictions, the access to the full text of this article is only available via subscription. New developments and device performance requirements in microelectronics industry add to the challenges in chemical mechanical planarization (CMP) process. One of the recently introduced materials to semiconductor manufacturing is germanium which enables improved device performance through better channel mobility in shallow trench isolation (STI) applications for advanced circuits. This paper focuses on controlling germanium/silica selectivity for advanced STI CMP applications through slurry modification by surface active agents. Surface adsorption characteristics of cationic and anionic surfactants on germanium and silica wafers are analyzed in order to control selectivity as well as the defectivity performance of the CMP applications. The effects of surfactant charge and concentration (up to self-assembly) are studied in terms of slurry stability, material removal rates and surface defectivity. Surface charge manipulation by the surfactant adsorption on the germanium surface is presented as the main criteria on the selection of the proper surfactant/oxidizer systems for CMP. The outlined correlations are systematically presented to highlight slurry modification criteria for the desired selectivity results. Consequently, the paper evaluates the slurry selectivity control and improvement criteria for the new materials introduced to microelectronics applications with CMP requirement by evaluating the germanium silica system as a model application. European Commission
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | NANO-PROX

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok