Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gouveia, L. (2014)
Publisher: OMICS Publishing Group
Languages: English
Types: Article
Subjects: Biorefinery, Microalgae
Microalgae are an emerging research field due to their high potential as a source of several biofuels in addition to the fact that they have a high-nutritional value and contain compounds that have health benefits. They are also highly used for water stream bioremediation and carbon dioxide mitigation. Therefore, the tiny microalgae could lead to a huge source of compounds and products, giving a good example of a real biorefinery approach. This work shows and presents examples of experimental microalgae-based biorefineries grown in an autotrophic mode at a laboratory scale.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Shibata S, Natori Y, Nishihara T, Tomisaka K, Matsumoto K, et al. (2003) Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocininduced diabetes. J Nutr Sci Vitaminol 49: 334-339.
    • 2. Shibata S, Sansawa H (2006) Preventive effects of heterotrophically cultured Chlorella regularis on lifestyle-associated diseases. Annu Rep Yakult Central Inst Microbiol Res 26: 63-72.
    • 3. Shibata S, Hayakawa K, Egashira Y, Sanada H (2007) Hypocholesterolemic mechanism of Chlorella: Chlorella and its indigestible fraction enhance hepatic cholesterol catabolism through up-regulation of cholesterol 7alpha-hydroxylase in rats. Biosci Biotechnol Biochem 71: 916-925.
    • 4. Burja AM, Banaigs B, Abou-Mansour EB, Wright PC (2001) Marine cyanobacteria - a prolific source of natural products. Tetrahedron 57: 9347- 9377.
    • 5. Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Crit Rev Biotechnol 25: 73-95.
    • 6. Yamaguchi K (1996) Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: A review. J Appl Phycol 8: 487-502.
    • 7. Nuño K, Villarruel-López A, Puebla-Pérez AM, Romero-Velarde E, PueblaMora AG, et al. (2013) Effects of the marine microalgae Isochrysis galbana and Nannochloropsis oculata in diabetic rats. J Funct Foods 5: 106-115.
    • 8. Gerster H (1993) Anticarcinogenic Effect of Common Carotenoids. Int J Vitam Nutr Res 63: 93-121.
    • 9. Willett WC (1994) Micronutrients and Cancer Risk. Am J Clin Nutr 59: 1162- 1165.
    • 10. Lupulescu A (1994) The role of vitamin-A, vitamin-beta-carotene, vitamin-E and vitamin-C in cancer cell biology. Int J Vitam Nutr Res 64: 3-14.
    • 11. Tanaka T, Shnimizu M, Moriwaki H (2012) Cancer Chemoprevention by Carotenoids. Molecules 17: 3202-3242.
    • 12. Kohlmeier L, Hastings SB (1995) Epidemiologic Evidence of a Role of Carotenoids in Cardiovascular-Disease Prevention. Am J Clin Nutr 62: 1370S-1376S.
    • 13. Giordano P, Scicchitano P, Locorotondo M, Mandurino C, Ricci G, et al. (2012) Carotenoids and Cardiovascular Risk. Curr Pharm Des 18: 5577-5589.
    • 14. Snodderly DM (1995) Evidence for Protection against Age-Related Macular Degeneration by Carotenoids and Antioxidant Vitamins. Am J Clin Nutr 62: 1448S-1461S.
    • 15. Weikel KA, Chiu CJ, Taylor A (2012) Nutritional modulation of age-related macular degeneration. Mol Aspects Med 33: 318-375.
    • 16. Meydani SN, Wu DY, Santos MS, Hayek MG (1995) Antioxidants and ImmuneResponse in Aged Persons - Overview of Present Evidence. Am J Clin Nutr 62: 1462S-1476S.
    • 17. Park JS, Chyun JH, Kim YK, Line LL, Chew BP (2010) Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab (Lond) 7: 18.
    • 18. Matos CT, Gouveia L, Morais AR, Reis A, Bogel-Lukasik R (2013) Green metrics evaluation of isoprene production by microalgae and bacteria. Green Chem 15: 2854-2864.
    • 19. Painter TJ (1993) Carbohydrate polymers in desert reclamation. The potential of microalgal biofertilizers. Carbohyd Polym 20: 77-86.
    • 20. Dey K (2011) Production of Biofertilizer (Anabaena and Nostoc) using CO2. Presentation on Roll: DURJ BT No.2011/2. Regn.No: 660.
    • 21. Sahu D, Priyadarshani I, Rath B (2012) Cyanobacteria - as potential biofertilizer. CIBTech Journal Microbiol 1: 20-26.
    • 22. Gouveia L, Oliveira C (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36: 269-274.
    • 23. Miranda JR, Passarinho PC, Gouveia L (2012) Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production. Appl Microbiol Biotechnol 96: 555-564.
    • 24. Marques AE, Barbosa TA, Jotta J, Tamagnini P, Gouveia L (2011) Biohydrogen production by Anabaena sp. PCC 7120 wild-type and mutants under different conditions: Light, Nickel and CO2. Biomass and Bioenergy 35: 4426-4434.
    • 25. Ferreira AF, Ortigueira J, Alves L, Gouveia L, Moura P, et al. (2013a) Energy requirement and CO2 emissions of bioH2 production from microalgal biomass. Biomass & Bioenergy 49: 249-259.
    • 26. Batista AP, Moura P, Marques PASS, Ortigueira J, Alves L, et al. (2014) Scenedesmus obliquus as a feedstock for bio-hydrogen production by Enterobacter aerogenes and Clostridium butyricum by dark fermentation. Fuel 117: 537-543.
    • 27. Wijffels RH, Barbosa MJ, Eppink MHM (2010) Microalgae for bulk chemicals and biofuels. Biofuels Bioprod Bioref 4: 287-295.
    • 28. Vanthoor-Koopmans M, Wijffels RH, Barbosa MJ, Eppink MHM (2013) Biorefinery of microalgae for food and fuel. Bioresour Technol 135: 142-149.
    • 29. Brennan L, Owende P (2010) Biofuels from microalgae - A review of technologies for production, processing, and extractions of biofuels and coproducts. Ren Sustain Energy Rev 14: 557-577.
    • 30. da Silva TL, Gouveia L, Reis A (2014) Integrated microbial processes for biofuels and high added value products: the way to improve the cost effectiveness of biofuel production. Appl Microbiol Biotechnol. doi:10.1007/s00253-013-5389-5.
    • 31. Nobre BP, Villalobos F, Barragán BE, Oliveira AC, Batista AP, et al. (2013) A biorefinery from Nannochloropsis sp. microalga - Extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol 135: 128-136.
    • 32. Ferreira AF, Marques AC, Batista AP, Marques PASS, Gouveia L, et al. (2012) Biological hydrogen production by Anabaena sp. - yield, energy and CO2 analysis including fermentative biomass recovery. Int J Hydrogen Energ 37: 179-190.
    • 33. Collet P, Hélias A, Lardon L, Ras M, Goy RA, et al. (2011) Lifecycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102: 207-214.
    • 34. Ehimen EA, Sun ZF, Carrington CG, Birch EJ, Eaton-Rye JJ (2011) Anaerobic digestion of microalgae residues resulting from the biodiesel production process. Appl Energ 88: 3454-3463.
    • 35. Gouveia L, Neves C, Sebastião D, Nobre BP, Matos CT (2014) Effect of light on the production of bioelectricity and pigments by a Photosynthetic Alga Microbial Fuel Cell. Bioresour Technol 154: 171-177.
    • 36. Powel EE, Hill GA (2009) Economic assessment of an integrated bioethanolbiodiesel-microbial fuel cell facility utilizing yeast and photosynthetic algae. Chem Eng Res Design 87: 1340-1348.
    • 37. Campenni' L, Nobre BP, Santos CA, Oliveira AC, Aires-Barros AR, et al. (2013) Carotenoids and lipids production of autotrophic microalga Chlorella protothecoides under nutritional, salinity and luminosity stress conditions. Appl Microbiol Biotechnol 97: 1383-1393.
    • 38. EN 14214 (2008) Automotive fuels-fatty acid methyl esters (FAME) for diesel engines-requirements and test methods.
    • 39. Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150: 51-56.
    • 40. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27: 409-416.
    • 41. Kim AL, Lee OK, Seong DH, Lee GG, Jung YT, et al. (2013) Chemoenzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga Dunaliella tertiolecta. Bioresour Technol 132: 197-201.
    • 42. Olguín EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30: 1031-1046.
    • 43. Pacheco R, Ferreira AF, Pinto T, Nobre BP, Loureiro D, et al. (2014) Life Cycle Assessment of a Spirogyra sp. biorefinery for the production of pigments, hydrogen and leftovers energy valorisation. Applied Energy.
    • 44. Mostafa SSM, Shalaby EA, Mahmoud GI (2012) Cultivating microalgae in domestic wastewater for biodiesel production. Nat Sci Biol 4: 56-65.
    • 45. Subhadra B, Edwards M (2010) Algal biofuel production using integrated renewable energy park approach in United States. Energ Policy 38: 4897-4902.
    • 46. Subhadra BG (2010) Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energy Policy 38: 5892-5901.
    • 47. Clarens AF, Nassau H, Resurreccion EP, White MA Colosi LM (2011) Environmental Impacts of Algae-Derived Biodiesel and Bioelectricity for Transportation. Environ Sci Technol 45: 7554-7560.
    • 48. Subhadra B, Edwards B (2011) Coproduct market analysis and water footprint of simulated commercial algal biorefineries. Appl Energ 88: 3515-3523.
    • 49. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102: 35-42.
    • 50. Ferreira AF, Ribeiro L, Batista AP, Marques PASS, Nobre BP, et al. (2013b) A Biorefinery from Nannochloropsis sp. microalga - Energy and CO2 emission and economic analyses. Bioresour Technol 138: 235-244.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from