LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Matula, Dominik (2013)
Languages: Czech
Types: Bachelor thesis
Subjects: trojúhelník vepsaný trojúhelníku; inscribed triangle in a triangle; trojúhelník v jednotkové kouli; gaussovský trojúhelník; Gaussian triangle; random triangle; triangle in rectangle; náhodný trojúhelník; triangle in unit ball; trojúhelník v obdélníku

Classified by OpenAIRE into

arxiv: Computer Science::Computational Geometry
The author summarizes some previous results concerning random triangles. He describes the Gaussian triangle and random triangles whose vertices lie in a unit n-dimensional ball, in a rectangle or in a general bounded convex set. In the second part, the author deals with an inscribed triangle in a triangle - let ABC be an equilateral triangle and let M, N, O be three points, each laying on one side of the ABC. We call MNO inscribed triangle (in an equi- laterral triangle). The median triangle is a special case of that triangle. Author starts with the median triangle and one by one replaces it's vertices by random points with uniform distribution on the corresponding sides. He proves that propability of such inscribed triangle to be an obtuse triangle increases with number of randomly chosen points while the expected area reminds constant. The whole thesis is concluded with a simulation study. 1
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article