Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Christos P. Antonopoulos; Nikolaos S. Voros (2017)
Publisher: MDPI AG
Languages: Old English
Types: Article
Subjects: data compression, Electronics, Wireless Sensor Networks, hardware accelerator, embedded systems, complete solution, hardware design, IoT Wireless Sensor Network platforms, TK7800-8360, ultra-low power, experimental evaluation
For highly demanding scenarios such as continuous bio-signal monitoring, transmitting excessive volumes of data wirelessly comprises one of the most critical challenges. This is due to the resource limitations posed by typical hardware and communication technologies. Driven by such shortcomings, this paper aims at addressing the respective deficiencies. The main axes of this work include (a) data compression, and (b) the presentation of a complete, efficient and practical hardware accelerator design able to be integrated in any Internet of Things (IoT) platform for addressing critical challenges of data compression. On one hand, the developed algorithm is presented and evaluated on software, exhibiting significant benefits compared to respective competition. On the other hand, the algorithm is fully implemented on hardware providing a further proof of concept regarding the implementation feasibility with respect to state-of-the art hardware design approaches. Finally, system-level performance benefits, regarding data transmission delay and energy saving, are highlighted, taking into consideration the characteristics of prominent IoT platforms. Concluding, this paper presents a holistic approach based on data compression that is able to drastically enhance an IoT platform’s performance and tackle efficiently a notorious challenge of highly demanding IoT applications such as real-time bio-signal monitoring.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Funded by projects

  • EC | RADIO

Cite this article

Collected from