LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cui, Yanou; Pospelov, Maxim; Pradler, Josef (2017)
Publisher: APS
Journal: Physical Review D
Languages: English
Types: Article
Subjects: High Energy Physics - Phenomenology, High Energy Physics - Experiment, Astrophysics - Cosmology and Nongalactic Astrophysics

Classified by OpenAIRE into

arxiv: Astrophysics::Cosmology and Extragalactic Astrophysics
We consider the generic possibility that the Universe’s energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of 30 MeV/c, both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a “neutrino floor” for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A13 (2016).
    • [2] S. Weinberg, Cosmology (OUP, Oxford, 2008).
    • [3] R. Essig, J. A. Jaros, W. Wester, P. H. Adrian, S. Andreas et al., arXiv:1311.0029.
    • [4] J. Huang and Y. Zhao, J. High Energy Phys. 02 (2014) 077.
    • [5] K. Agashe, Y. Cui, L. Necib, and J. Thaler, J. Cosmol. Astropart. Phys. 10 (2014) 062.
    • [6] J. Berger, Y. Cui, and Y. Zhao, J. Cosmol. Astropart. Phys. 02 (2015) 005.
    • [7] C. Kachulis et al. (Super-Kamiokande), arXiv:1711.05278 [Phys. Rev. Lett. (to be published)].
    • [8] C. Boehm and P. Fayet, Nucl. Phys. B683, 219 (2004).
    • [9] M. Pospelov, A. Ritz, and M. B. Voloshin, Phys. Lett. B 662, 53 (2008).
    • [10] N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, Phys. Rev. D 79, 015014 (2009).
    • [11] J. Jaeckel and A. Ringwald, Annu. Rev. Nucl. Part. Sci. 60, 405 (2010).
    • [12] K. Kong, G. Mohlabeng, and J.-C. Park, Phys. Lett. B 743, 256 (2015).
    • [13] A. Bhattacharya, R. Gandhi, and A. Gupta, J. Cosmol. Astropart. Phys. 03 (2015) 027.
    • [14] K. Agashe, Y. Cui, L. Necib, and J. Thaler, J. Phys. Conf. Ser. 718, 042041 (2016).
    • [15] H. Alhazmi, K. Kong, G. Mohlabeng, and J.-C. Park, J. High Energy Phys. 04 (2017) 158.
    • [16] L. Necib, J. Moon, T. Wongjirad, and J. M. Conrad, Phys. Rev. D 95, 075018 (2017).
    • [17] J. F. Cherry, M. T. Frandsen, and I. M. Shoemaker, Phys. Rev. Lett. 114, 231303 (2015).
    • [18] J. Kopp, J. Liu, and X.-P. Wang, J. High Energy Phys. 04 (2015) 105.
    • [19] P.-K. Hu, A. Kusenko, and V. Takhistov, Phys. Lett. B 768, 18 (2017).
    • [20] D. Kim, J.-C. Park, and S. Shin, Phys. Rev. Lett. 119, 161801 (2017).
    • [21] A. Bhattacharya, R. Gandhi, A. Gupta, and S. Mukhopadhyay, J. Cosmol. Astropart. Phys. 05 (2017) 002.
    • [22] D. Baumann, D. Green, J. Meyers, and B. Wallisch, J. Cosmol. Astropart. Phys. 01 (2016) 007.
    • [23] C. Brust, Y. Cui, and K. Sigurdson, J. Cosmol. Astropart. Phys. 08 (2017) 020.
    • [24] K. M. Nollett and G. Steigman, Phys. Rev. D 89, 083508 (2014).
    • [25] K. M. Nollett and G. Steigman, Phys. Rev. D 91, 083505 (2015).
    • [26] C. Boehm, M. J. Dolan, and C. McCabe, J. Cosmol. Astropart. Phys. 08 (2013) 041.
    • [27] V. Poulin, P. D. Serpico, and J. Lesgourgues, J. Cosmol. Astropart. Phys. 08 (2016) 036.
    • [28] S. Betts et al., in Proceedings of Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013) Minneapolis, MN, USA, 2013, edited by N. A. Graf, M. E. Peskin, and J. L. Rosner (American Physical Society, 2013), http://www.slac .stanford.edu/econf/C1307292.
    • [29] J. F. Beacom, Annu. Rev. Nucl. Part. Sci. 60, 439 (2010).
    • [30] J. F. Beacom and M. R. Vagins, Phys. Rev. Lett. 93, 171101 (2004).
    • [31] J. Monroe and P. Fisher, Phys. Rev. D 76, 033007 (2007).
    • [32] L. E. Strigari, New J. Phys. 11, 105011 (2009).
    • [33] A. Drukier and L. Stodolsky, Phys. Rev. D 30, 2295 (1984); 30, 2295 (1984).
    • [34] D. Z. Freedman, Phys. Rev. D 9, 1389 (1974).
    • [35] M. W. Goodman and E. Witten, Phys. Rev. D 31, 3059 (1985).
    • [36] D. Akimov et al. (COHERENT Collaboration), Science 357, 1123 (2017).
    • [37] K. Bays et al. (Super-Kamiokande Collaboration), Phys. Rev. D 85, 052007 (2012).
    • [38] E. Richard et al. (Super-Kamiokande Collaboration), Phys. Rev. D 94, 052001 (2016).
    • [39] D. S. Akerib et al. (LUX Collaboration), Phys. Rev. Lett. 116, 161301 (2016).
    • [40] E. Aprile et al. (XENON100 Collaboration), Phys. Rev. Lett. 109, 181301 (2012).
    • [41] A. Tan et al. (PandaX Collaboration), Phys. Rev. D 93, 122009 (2016).
    • [42] S. Palomares-Ruiz, Phys. Lett. B 665, 50 (2008).
    • [43] C. Garcia-Cely and J. Heeck, J. High Energy Phys. 05 (2017) 102.
    • [44] S. Palomares-Ruiz and S. Pascoli, Phys. Rev. D 77, 025025 (2008).
    • [45] M. Pospelov, A. Ritz, and M. B. Voloshin, Phys. Rev. D 78, 115012 (2008).
    • [46] P. W. Graham, D. E. Kaplan, S. Rajendran, and M. T. Walters, Phys. Dark Universe 1, 32 (2012).
    • [47] R. Essig, J. Mardon, and T. Volansky, Phys. Rev. D 85, 076007 (2012).
    • [48] H. An, M. Pospelov, and J. Pradler, Phys. Rev. Lett. 111, 041302 (2013).
    • [49] H. An, M. Pospelov, J. Pradler, and A. Ritz, Phys. Lett. B 747, 331 (2015).
    • [50] Y. Hochberg, Y. Zhao, and K. M. Zurek, Phys. Rev. Lett. 116, 011301 (2016).
    • [51] R. Essig, M. Fernandez-Serra, J. Mardon, A. Soto, T. Volansky, and T.-T. Yu, J. High Energy Phys. 05 (2016) 046.
    • [52] Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Phys. Lett. 98B, 265 (1981).
    • [53] J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 774 (1982).
    • [54] Z. Chacko, L. J. Hall, T. Okui, and S. J. Oliver, Phys. Rev. D 70, 085008 (2004).
    • [55] V. Berezinsky and J. W. F. Valle, Phys. Lett. B 318, 360 (1993).
    • [56] M. Lattanzi and J. W. F. Valle, Phys. Rev. Lett. 99, 121301 (2007).
    • [57] J. N. Esteves, F. R. Joaquim, A. S. Joshipura, J. C. Romao, M. A. Tortola, and J. W. F. Valle, Phys. Rev. D 82, 073008 (2010), comments: 16 pages, 6 eps figures. Minor corrections.
    • [58] P.-H. Gu, E. Ma, and U. Sarkar, Phys. Lett. B 690, 145 (2010).
    • [59] M. Lattanzi, R. A. Lineros, and M. Taoso, New J. Phys. 16, 125012 (2014).
    • [60] B. Batell, M. Pospelov, and A. Ritz, Phys. Rev. D 80, 095024 (2009).
    • [61] M. Pospelov, Phys. Rev. D 84, 085008 (2011).
    • [62] E. Izaguirre, G. Krnjaic, P. Schuster, and N. Toro, Phys. Rev. D 91, 094026 (2015).
    • [63] M. Pospelov and J. Pradler, Phys. Rev. D 89, 055012 (2014).
    • [64] B. Batell, R. Essig, and Z. Surujon, Phys. Rev. Lett. 113, 171802 (2014).
    • [65] B. Batell, P. deNiverville, D. McKeen, M. Pospelov, and A. Ritz, Phys. Rev. D 90, 115014 (2014).
    • [66] S. Tulin, Phys. Rev. D 89, 114008 (2014).
    • [67] J. A. Dror, R. Lasenby, and M. Pospelov, Phys. Rev. Lett. 119, 141803 (2017).
    • [68] J. A. Dror, R. Lasenby, and M. Pospelov, Phys. Rev. D 96, 075036 (2017).
    • [69] M. Battaglieri et al., arXiv:1707.04591.
    • [70] B. Holdom, Phys. Lett. 166B, 196 (1986).
    • [71] J. Redondo, J. Cosmol. Astropart. Phys. 07 (2008) 008.
    • [72] H. An, M. Pospelov, and J. Pradler, Phys. Lett. B 725, 190 (2013).
    • [73] P. W. Graham, J. Mardon, S. Rajendran, and Y. Zhao, Phys. Rev. D 90, 075017 (2014).
    • [74] I. M. Bloch, R. Essig, K. Tobioka, T. Volansky, and T.-T. Yu, J. High Energy Phys. 06 (2017) 087.
    • [75] G. G. Raffelt, Annu. Rev. Nucl. Part. Sci. 49, 163 (1999).
    • [76] A. G. Riess et al., Astrophys. J. 826, 56 (2016).
    • [77] Z. Berezhiani, A. D. Dolgov, and I. I. Tkachev, Phys. Rev. D 92, 061303 (2015).
    • [78] A. Chudaykin, D. Gorbunov, and I. Tkachev, Phys. Rev. D 94, 023528 (2016).
    • [79] R. H. Helm, Phys. Rev. 104, 1466 (1956).
    • [80] J. Bergstrom, M. C. Gonzalez-Garcia, M. Maltoni, C. Pena-Garay, A. M. Serenelli, and N. Song, J. High Energy Phys. 03 (2016) 132.
    • [81] N. Vinyoles, A. M. Serenelli, F. L. Villante, S. Basu, J. Bergstrm, M. C. Gonzalez-Garcia, M. Maltoni, C. Pea-Garay, and N. Song, Astrophys. J. 835, 202 (2017).
    • [82] N. Grevesse and A. J. Sauval, Space Sci. Rev. 85, 161 (1998).
    • [83] M. Asplund, N. Grevesse, A. J. Sauval, and P. Scott, Annu. Rev. Astron. Astrophys. 47, 481 (2009).
    • [84] A. Strumia and F. Vissani, Phys. Lett. B 564, 42 (2003).
    • [85] N. Auerbach and B. A. Brown, Phys. Rev. C 65, 024322 (2002).
    • [86] E. Kolbe, K. Langanke, and P. Vogel, Phys. Rev. D 66, 013007 (2002).
    • [87] N. Paar, D. Vretenar, T. Marketin, and P. Ring, Phys. Rev. C 77, 024608 (2008).
    • [88] K. Abe et al. (Super-Kamiokande), Phys. Rev. D 83, 052010 (2011).
    • [89] S. Baker and R. D. Cousins, Nucl. Instrum. Methods 221, 437 (1984).
    • [90] D. S. Akerib et al. (LUX Collaboration), Phys. Rev. Lett. 118, 021303 (2017).
    • [91] E. Aprile et al. (XENON Collaboration), Phys. Rev. Lett. 119, 181301 (2017).
    • [92] R. F. Lang, C. McCabe, S. Reichard, M. Selvi, and I. Tamborra, Phys. Rev. D 94, 103009 (2016).
    • [93] H. An, M. Pospelov, J. Pradler, and A. Ritz, Phys. Rev. Lett. 120, 141801 (2018).
    • [94] S. Yellin, Phys. Rev. D 66, 032005 (2002).
    • [95] C. E. Aalseth et al., arXiv:1707.08145.
    • [96] M. Pospelov and J. Pradler, Phys. Rev. D 85, 113016 (2012).
    • [97] G. Alimonti et al. (Borexino Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 600, 568 (2009).
    • [98] C. F. Perdrisat, V. Punjabi, and M. Vanderhaeghen, Prog. Part. Nucl. Phys. 59, 694 (2007).
    • [99] B. Dasgupta and J. F. Beacom, Phys. Rev. D 83, 113006 (2011).
    • [100] G. Bellini et al. (Borexino Collaboration), Phys. Rev. D 85, 092003 (2012).
    • [101] K. N. Abazajian, Phys. Rep. 711, 1 (2017).
    • [102] S. Andriamonje et al. (CAST Collaboration), J. Cosmol. Astropart. Phys. 04 (2007) 010.
    • [103] M. Giannotti, J. Ruz, and J. K. Vogel, Proc. Sci., ICHEP2016 (2016) 195 [arXiv:1611.04652].
    • [104] J. Redondo, J. Cosmol. Astropart. Phys. 12 (2013) 008.
    • [105] E. Aprile et al. (XENON100 Collaboration), Phys. Rev. D 90, 062009 (2014); 95, 029904(E) (2017).
    • [106] J. Redondo, J. Cosmol. Astropart. Phys. 07 (2015) 024.
    • [107] H. Vogel and J. Redondo, J. Cosmol. Astropart. Phys. 02 (2014) 029.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article