LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fabiano Hernandes (2009)
Publisher: Instituto Tecnológico de Aeronáutica
Languages: English
Types: Doctoral thesis
Subjects: Escoamento compressível, Física, Coeficientes aerodinâmicos, Aerodinâmica não-estacionária, Dinâmica dos fluidos computacional, Método de malha turbilhonar

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics, Physics::Atmospheric and Oceanic Physics
Unsteady solutions for the aerodynamic coefficients of a thin airfoil in compressible subsonic or supersonic flows are studied. The lift, the pitch moment, and pressure coefficients are obtained numerically for the following motions: the indicial response (unit step function) of the airfoil, i.e., a sudden change in the angle of attack; a thin airfoil penetrating into a sharp edge gust (for several gust speed ratios); a thin airfoil penetrating into a one-minus-cosine gust and sinusoidal gust (a typical gust used in commercial aircraft design); oscillating airfoil; and also the interaction of the airfoil with a shed (from convection phenomenon) vortex passing under the airfoil, a phenomenon known in literature as AVI (Airfoil Vortex Interaction). The present work uses a numerical approach based on vortex singularity. The numerical model is created by means of the airfoil discretization in uniform segments and the compressible flow vortex singularity is used. The results available in the literature are based on approximated exponential equations, or computed via Computational Fluid Dynamics (CFD). Thus, the purpose of this method is to obtain a more accurate computation compared to those of approximated equations, and numerically quite faster compared to those obtained via CFD.