LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Teixeira, Leonardo Sena Gomes; Leão, Elsimar S.; Dantas, Alailson Falcão; Pinheiro, Heloísa Lúcia C.; Costa, Antonio Celso Spinola; Andrade, Jailson Bittencourt de (2004)
Languages: English
Types: Article
Subjects: Formaldehyde, Solid phase spectrophotometric, Fluoral P, Ethanol fuel
p. 711–715 In thiswork, a solid phase spectrophotometric method in association with flowinjection analysis for formaldehyde determination has been developed with direct measurement of light-absorption in C18 material. The 3,5-diacetyl-1,4-dihydrolutidine produced from the reaction between formaldehyde and fluoral P was quantitatively retained on C18 support and the spectrophotometric detection was performed simultaneously at 412 nm. The retained complex was quickly eluted from C18 material with the eluent stream consisting of a 50% (v/v) ethanol solution. The results showed that the proposed method is simple, rapid and the analytical response is linear in the concentration range of 0.050–1.5 mg L−1. The limit of detection was estimated as 30 gL−1 and the R.S.D. 2.2% using a sample volume of 625 L. The system presented an analytical throughput of 20 determinations per hour. The method was successfully applied in the determination of formaldehyde in ethanol fuel.© 2004 Elsevier B.V. All rights reserved.
  • No references.
  • No related research data.
  • No similar publications.
Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok