OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Types: Doctoral thesis
Subjects: Biodiesel fuels, Nano-magnesium oxide particles, Diesel fuels industry, Magnesium oxide
M.Tech. (Chemical Engineering) There are a number of processes for the production of biodiesel. Homogenous catalysed processes are the most popular in large scale production due to short reaction times and less extreme reaction conditions. Despite this, homogenous catalysts have a number of disadvantages which include: high probability of soap formation in the presence of water and free fatty acids; they cannot be re-used since some of the catalyst is consumed during the reaction and the separation of the remaining catalyst from the product is difficult. In contrast, heterogeneous catalysts offer simplified production and purification processes. However, their reaction rates are low due to mass transfer restrictions. This work looked at the unsupported and supported nano-MgO as solid catalyst for soybean oil transesterification reaction. More research is being undertaken to overcome these low reaction rate problems. Nano-MgO was used since it has been considered as a bridge between homogenous and heterogeneous catalysts. It was supported to enable easy separation from the reaction products.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok