Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Patanè, D.; Di Grazia, G.; Cannata, A.; Montalto, P.; Boschi, E. (2008)
Publisher: AGU
Languages: English
Types: Article
Subjects: volcano plumbing system, volcanic tremor, LP and VLP events, Mt. Etna, :04.06. Seismology::04.06.08. Volcano seismology [04. Solid Earth]
A fundamental goal of volcano seismology is to understand the dynamics of active magmatic systems in order to assess eruptive behavior and the associated hazard. Imaging of magma conduits, quantification of magma transport and investigation of long-period seismic sources, together with their temporal variations, are crucial for the comprehension of eruption-triggering mechanisms. At Mt. Etna volcano, several intense episodes of tremor activity were recorded during 2007, in association with strombolian activity and/or intense fire fountaining episodes occurring from the South East Crater (SEC). The locations of the tremor sources and of the long-period seismic events are used here to constrain both the area and the depth range of magma degassing, highlighting the geometry of the shallow conduits feeding SEC. The imaged conduits consist of two connected resonating dike-like bodies, NNW-SSE and NW-SE oriented, extending from sea level to the surface. In addition, we show how tremor, long-period (LP) and very-long-period (VLP) event locations and signatures reflect pressure fluctuations in the plumbing system associated with the ascent/discharge of gas-rich magma linked to the lava fountains. The evidence here reported, also corroborated by ground deformation variations, can help develop a better prediction and early-warning system for those eruptions (effusive or explosive) that apparently manifest no clear precursors.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from