Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Christinat, Nicolas (2008)
Publisher: EPFL (Lausanne)
Languages: English
Types: 0038
Subjects: Boronic acids, Self-assembly, Macrocycles, Imine, Multicomponent reactions, Polymers, Rotaxanes, Cages, Acides boroniques, Auto-assemblage, Imines, Réactions à composants multiples, Polymères
This work describes the synthesis and characterization of boronic acid-based supramolecular structures. Macrocycles, dendritic structures, polymers, rotaxanes, and cages were assembled using four types of reversible reactions. The key point of the strategy is the parallel utilization of two –or more– of these reactions. Initially, aryl and alkylboronic acids were condensed with dihydroxypyridine ligands to give tetrameric or pentameric macrocycles, in which four or five boronate esters are connected by dative B-N bonds. These macrocycles were then used as scaffolds for the assembly of more complex structures from the multicomponent reaction of formyl functionalized boronic acids, with dihydroxypyridine ligands and primary amines. Dendritic structures having a tetrameric or pentameric macrocyclic core and four, five, eight, or ten amine-derived groups in their periphery were obtained. Three-component reactions were further used to prepare boronate ester polymers from aryl boronic acids, 1,2,4,5-tetrahydroxybenzene and either 1,2-di(4-pyridyl)ethylene or 4,4'-dipyridine. Crystallographic analyses show that the bis(dioxaborole) units are connected by dipyridyl linkers via dative B-N interactions. A computational study provides evidence that the polymers are strongly colored due to efficient intrastrand charge transfer excitations from the tetraoxobenzene to the dipyridyl linker. This latter property was used to assemble the first boron-based rotaxanes from 1,2-di(4-pyridyl)ethylene, catechol, 3,5-bis(trifluoromethyl)phenylboronic acid and 1,5-dinaphto-38-crown-10 or bis-p-phenylene-34-crown-10. In the last part of this work, boronate ester condensations were combined with imine condensations to build organic macrocycles and cages. The former interaction was also used together with metal-ligand interactions to prepare rhenium-based macrocycles. Finally, a nanometer-sized macrocycle was obtained in one step from four chemically distinct building blocks via the simultaneous utilization of the three reversible reactions.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok