Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ciftci, Serdar; Korshunov, Pavel; Akyuz, Ahmet Oguz; Ebrahimi, Touradj (2015)
Publisher: Spie-Int Soc Optical Engineering (Bellingham)
Languages: English
Types: Article
Subjects: false color visualization, subjective assessment, visual privacy protection, objective evaluation

Classified by OpenAIRE into

Many privacy protection tools have been proposed for preserving privacy. Tools for protection of visual privacy available today lack either all or some of the important properties that are expected from such tools. Therefore, in this paper, we propose a simple yet effective method for privacy protection based on false color visualization, which maps color palette of an image into a different color palette, possibly after a compressive point transformation of the original pixel data, distorting the details of the original image. This method does not require any prior face detection or other sensitive regions detection and, hence, unlike typical privacy protection methods, it is less sensitive to inaccurate computer vision algorithms. It is also secure as the look-up tables can be encrypted, reversible as table look-ups can be inverted, flexible as it is independent of format or encoding, adjustable as the final result can be computed by interpolating the false color image with the original using different degrees of interpolation, less distracting as it does not create visually unpleasant artifacts, and selective as it preserves better semantic structure of the input. Four different color scales and four different compression functions, one which the proposed method relies, are evaluated via objective (three face recognition algorithms) and subjective (50 human subjects in an online-based study) assessments using faces from FERET public dataset. The evaluations demonstrate that DEF and RBS color scales lead to the strongest privacy protection, while compression functions add little to the strength of privacy protection. Statistical analysis also shows that recognition algorithms and human subjects perceive the proposed protection similarly.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article