LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mescher, M.; Merkle, H.; Kirsch, J.; Garwood, M.; Gruetter, R. (1998)
Languages: English
Types: Article
Subjects:
Water suppression is typically performed in vivo by exciting the longitudinal magnetization in combination with dephasing, or by using frequency-selective coherence generation. MEGA, a frequency-selective refocusing technique, can be placed into any pulse sequence element designed to generate a Hahn spin-echo or stimulated echo, to dephase transverse water coherences with minimal spectral distortions. Water suppression performance was verified in vivo using stimulated echo acquisition mode (STEAM) localization, which provided water suppression comparable with that achieved with four selective pulses in 3,1-DRYSTEAM. The advantage of the proposed method was exploited for editing J-coupled resonances. Using a double-banded pulse that selectively inverts a J-coupling partner and simultaneously suppresses water, efficient metabolite editing was achieved in the point resolved spectroscopy (PRESS) and STEAM sequences in which MEGA was incorporated. To illustrate the efficiency of the method, the detection of γ-aminobutyric acid (GABA) was demonstrated, with minimal contributions from macromolecules and overlying singlet peaks at 4 T. The estimated occipital GABA concentration was consistent with previous reports, suggesting that editing for GABA is efficient when based on MEGA at high field strengths.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article