LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Guerraoui, Rachid; Kermarrec, Anne-Marie; Pavlovic, Matej; Seredinschi, Dragos-Adrian (2016)
Publisher: ACM Press (New York, New York, USA)
Languages: English
Types: Article
Subjects: Distributed systems, Gossip, Group communication, Byzantine fault tolerance

Classified by OpenAIRE into

ACM Ref: Hardware_MEMORYSTRUCTURES
This paper presents Atum, a group communication middleware for a large, dynamic, and hostile environment. At the heart of Atum lies the novel concept of volatile groups: small, dynamic groups of nodes, each executing a state machine replication protocol, organized in a flexible overlay. Using volatile groups, Atum scatters faulty nodes evenly among groups, and then masks each individual fault inside its group. To broadcast messages among volatile groups, Atum runs a gossip protocol across the overlay. We report on our synchronous and asynchronous (eventually synchronous) implementations of Atum, as well as on three representative applications that we build on top of it: A publish/subscribe platform, a file sharing service, and a data streaming system. We show that (a) Atum can grow at an exponential rate beyond 1000 nodes and disseminate messages in polylogarithmic time (conveying good scalability); (b) it smoothly copes with 18% of nodes churning every minute; and (c) it is impervious to arbitrary faults, suffering no performance decay despite 5.8% Byzantine nodes in a system of 850 nodes.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article