Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hanhart, Philippe; Bernardo, Marco; Korshunov, Pavel; Pereira, Manuela; Pinheiro, Antonio; Ebrahimi, Touradj (2014)
Languages: English
Types: 0038
Subjects: Image quality assessment, objective metrics, High Dynamic Range, JPEG XT
High Dynamic Range (HDR) imaging is able to capture a wide range of luminance values, closer to what the human visual system can perceive. It is believed by many that HDR is a technology that will revolutionize TV and cinema industry similar to how color television did. However, the complexity of HDR requires reinvention of the whole chain from capture to display. In this paper, HDR images compressed with the upcoming JPEG XT HDR image coding standard are used to investigate the correlation between thirteen well known full-reference metrics and perceived quality of HDR content. The metrics are benchmarked using ground truth subjective scores collected during quality evaluations performed on a Dolby Pulsar HDR monitor. Results demonstrate that objective quality assessment of HDR image compression is challenging. Most of the tested metrics, with exceptions of HDR-VDP-2 and FSIM computed for luma component, poorly predict human perception of visual quality.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok