LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pauly, Mark; Keiser, Richard; Gross, Markus (2003)
Languages: English
Types: Article
Subjects: Approximation theory, Computational geometry, Curve fitting, Graph theory, Parameter estimation, Principal component analysis
We present a new technique for extracting line-type features on point-sampled geometry. Given an unstructured point cloud as input, our method first applies principal component analysis on local neighborhoods to classify points according to the likelihood that they belong to a feature. Using hysteresis thresholding, we then compute a minimum spanning graph as an initial approximation of the feature lines. To smooth out the features while maintaining a close connection to the underlying surface, we use an adaptation of active contour models. Central to our method is a multi-scale classification operator that allows feature analysis at multiple scales, using the size of the local neighborhoods as a discrete scale parameter. This significantly improves the reliability of the detection phase and makes our method more robust in the presence of noise. To illustrate the usefulness of our method, we have implemented a non-photorealistic point renderer to visualize point-sampled surfaces as line drawings of their extracted feature curves.

Share - Bookmark

Cite this article