LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Spie-Int Soc Optical Engineering (Bellingham)
Languages: English
Types: Article
Subjects: privacy evaluations, privacy protection tools, dataset, video surveillance

Classified by OpenAIRE into

ACM Ref: Data_MISCELLANEOUS
Visual privacy protection, i.e., obfuscation of personal visual information in video surveillance is an important and increasingly popular research topic. However, while many datasets are available for testing performance of various video analytics, little to nothing exists for evaluation of visual privacy tools. Since surveillance and privacy protection have contradictory objectives, the design principles of corresponding evaluation datasets should differ too. In this paper, we outline principles that need to be considered when building a dataset for privacy evaluation. Following these principles, we present new, and the first to our knowledge, Privacy Evaluation Video Dataset (PEViD). With the dataset, we provide XML-based annotations of various privacy regions, including face, accessories, skin regions, hair, body silhouette, and other personal information, and their descriptions. Via preliminary subjective tests, we demonstrate the flexibility and suitability of the dataset for privacy evaluations. The evaluation results also show the importance of secondary privacy regions that contain non-facial personal information for privacy-intelligibility tradeoff. We believe that PEViD dataset is equally suitable for evaluations of privacy protection tools using objective metrics and subjective assessments.

Share - Bookmark

Cite this article