LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mollaert, J.; Tavallali, A. (2016)
Languages: English
Types: Article
Subjects:
An offshore breakwater is designed for the construction of a LNG-terminal. For the slope stability analysis of the rubble mound breakwater the existing and the extreme wave climate are considered. Pore water pressure variations exist in the breakwater and its permeable foundation. A wave trough combined with the moment of maximum wave run-up results in a decrease and increase of the pore water pressure, respectively. Therefore, the wave actions have on overall effect on the slope stability of the breakwater. To include the wave actions in the slope stability analysis a simplified method is used. For the slope stability analysis, a specific piezometric line is determined. This piezometric line consists of a wave profile and the profile of wave run-up. The slope stability analysis are performed with GEO-SLOPE/W 2007. For the geotechnical design of the breakwater load cases of extreme and normal waves combined with, respectively, extreme and normal water levels are analysed. All the load cases which included the wave actions result in lower stability safety factors than the load cases with only still water levels. Therefore the wave actions are the determining load case for the geotechnical stability of the breakwater and it should be studied in detail.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Collected from