LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Itoh, K; Freter, R (1989)
Languages: English
Types: Article
Subjects: Research Article
The function of indigenous lactobacilli in the control of other intestinal microbial species is not clear. Still more controversial is the effect of dietary bacterial supplements containing lactobacilli or other species. This situation is unlikely to change unless the mechanisms that control the colonization of ingested bacteria are better understood, and until more detailed information becomes available on the mechanisms by which certain populations of indigenous bacteria can affect the population sizes of other species. We used gnotobiotic mice and a continuous-flow culture system to study the interactions between Escherichia coli and (i) clostridia (in chloroform-treated cecal suspensions from conventional mice) and (ii) three strains of lactobacilli isolated from conventional mice. In gnotobiotic mice, the lactobacilli suppressed E. coli multiplication in the stomach and the small intestine, but had no demonstrable effect on E. coli multiplication in the large intestine. In contrast, clostridia were most effective in controlling E. coli multiplication in the large intestine. In the presence of both lactobacilli and clostridia, E. coli populations in the various regions of the gastrointestinal tract resembled those found in conventionalized control animals. The control of E. coli populations was not related to changes in pH or intestinal motility. In vitro stimulation of the above-described in vivo interactions required a two-stage continuous-flow culture in which the effluent from the first stage represented the influx to the second. The first stage was inoculated with lactobacilli, and the second stage was inoculated with either a pure culture of E. coli or E. coli and clostridia. In these instances, the E. coli populations in the second stage of the culture resembled in size those found in the large intestine of gnotobiotic mice harboring a similar flora. Although there are some current shortcomings of this in vitro model, we expect that a multistage continuous-flow culture can be developed to satisfactorily model the interactions among bacterial populations along the entire gastrointestinal tract.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Collected from

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok