LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pertovaara, Antti; Almeida, Armando (2006)
Publisher: Elsevier
Languages: English
Types: Book
Subjects: Antinociception, Brain projections, PAG, RVM, Nociception, GABA, Clinical considerations, NTS, Pain modulation, Spinal projections, Endogenous pain control system, Opioids
Academy of Finland - grant 78582. Sigrid Jusélius Foundation (Finland). Grünenthal Foundation (Portugal). Fundação para a Ciência e a Tecnologia (FCT) / Fundo Europeu de Desenvolvimento Regional (FEDER) - POCTI/NSE/46399/2002.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aicher SA, Randich A (1990). Antinociception and cardiovascular responses produced by electrical stimulation in the nucleus tractus solitarius, nucleus reticularis ventralis, and the caudal medulla. Pain 42: 103-119.
    • Aimone LD, Gebhart GF (1988). Serotonin and/or an excitatory amino acid in the medial medulla mediates stimulationproduced antinociception from the lateral hypothalamus in the rat. Brain Res 450: 170-180.
    • Aimone LD, Jones SL, Gebhart GF (1987). Stimulationproduced descending inhibition from the periaqueductal gray and nucleus raphe magnus in the rat: mediation by spinal monoamines but not opioids. Pain 123-136.
    • Almeida A, Tjølsen A, Lima D, Coimbra A, Hole K (1996). The medullary dorsal reticular nucleus facilitates acute nociception in the rat. Brain Res Bull 39: 7-15.
    • Almeida A, Storkson R, Lima D, Hole K, Tjølsen A (1999). The medullary dorsal reticular nucleus facilitates pain behaviour induced by formalin in the rat. Eur J Neurosci 11: 110-122.
    • Amit Z, Galina H (1986). Stress-induced analgesia: adaptive pain suppression. Physiol Rev 66: 1091-1120.
    • Baba H, Shimoji K, Yoshimura M (2000). Norepinephrine facilitates inhibitory transmission in substantia gelatinosa of adult rat spinal cord (part 1): effects on axon terminals of GABAergic and glycinergic neurons. Anesthesiology 92: 473-484.
    • Bach FW, Yaksh TL (1995). Release into ventriculo-cisternal perfusate of beta-endorphin- and Met-enkephalinimmunoreactivity: effects of electrical stimulation in the arcuate nucleus and periaqueductal gray of the rat. Brain Res 690: 167-176.
    • Bajic D, Proudfit HK (1999). Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. J Comp Neurol 405: 359-379.
    • Bandler R, McCulloch T, Dreher B (1985). Afferents to midbrain periaqueductal grey region involved in the 'defence reaction' in the cat as revealed by horseradish peroxidase. I. The telencephalon. Brain Res. 330: 109-119.
    • Basbaum AI, Clanton CH, Fields HL (1976). Opiate and stimulus-produced analgesia: functional anatomy of medullospinal pathway. Proc Natl Acad Sci USA 73: 4685-4688.
    • Baumeister AA (1991). The effects of bilateral intranigral microinjection of selective opioid agonists on behavioral responses to noxious thermal stimulation. Brain Res 557: 136-145.
    • Behbehani MM, Fields HL (1979). Evidence that an excitatory connection between the periaqueductal grey and nucleus raphe magnus mediates stimulation-produced analgesia. Brain Res 170: 85-93.
    • Bernard JF, Bester H, Besson JM (1996). Involvement of the spino-parabrachio-amygdaloid and -hypothalamic pathways in the autonomic and affective emotional aspects of pain. Prog Brain Res 107: 243-255.
    • Bing Z, Villanueva L, Le Bars D (1990). Acupuncture and diffuse noxious inhibitory controls: naloxone-reversible depression of activities of trigeminal convergent neurons. 37: 809-818.
    • Blackburn-Munro G, Blackburn-Munro R (2003). Pain in the brain: are hormones to blame? Trends Endocrinol Metab 14: 20-27.
    • Bouhassira D, Villanueva L, Bing Z, Le Bars D (1992). Involvement of the subnucleus reticularis dorsalis in diffuse noxious inhibitory controls in the rat. Brain Res 595: 353-357.
    • Bouhassira D, Gall O, Chitour D, Le Bars D (1995). Dorsal horn convergent neurones: negative feedback triggered by spatial summation of nociceptive afferents. Pain 62: 195-200.
    • Brandt SA, Livingston A (1990). Receptor changes in the spinal cord of sheep associated with exposure to chronic pain. Pain 42: 323-329.
    • Brown JA, Barbaro NM (2003). Motor cortex stimulation for central and neuropathic pain: current status. Pain 104: 431-435.
    • Burnett A, Gebhart GF (1991). Characterization of descending modulation of nociception from the A5 cell group. Brain Res 546: 271-281.
    • Calvino B, Villanueva L, Le Bars D (1987). Dorsal horn (convergent) neurones in the intact anesthetized arthritic rat: II. Heterotopic inhibitory influences. Pain 31: 359-379.
    • Carstens E, Klumpp D, Zimmermann M (1980). Differential inhibitory effects of medial and lateral midbrain stimulation on spinal neuronal discharges to noxious skin heating in the cat. J Neurophysiol 43: 332-342.
    • Cedarbaum JM, Aghajanian GK (1978). Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J Comp Neurol 178: 1-16.
    • Chudler EH, Dong WK (1995). The role of the basal ganglia in nociception and pain. Pain 60: 3-38.
    • Coimbra A, Brandao ML (1997). Effects of 5-HT2 receptors blockade on fear-induced analgesia elicited by electrical stimulation of the deep layers of the superior colliculus and dorsal periaqueductal gray. Behav Brain Res 87: 97-103.
    • Cui M, Feng Y, McAdoo DJ, Willis WD (1999). Periaqueductal gray stimulation-induced inhibition of nociceptive dorsal horn neurons in rats is associated with the release of norepinephrine, serotonin, and amino acids. J Pharmacol Exp Ther 289: 868-876.
    • Danziger N, Weil-Fugazza J, Le Bars D, Bouhassira D (1999). Alteration of descending modulation of nociception during the course of monoarthritis in the rat. J Neurosci 19: 2394-2400.
    • DeLong MR (2000). The basal ganglia. In: Kandel ER, Schwartz JH, Jessell TM (Eds.) Principles of Neural Science, 4th edn. McGraw Hill, New York, pp. 853-867.
    • Dickhaus H, Pauser G, Zimmermann M (1985). Tonic descending inhibition affects intensity coding of nociceptive responses of spinal dorsal horn neurones in the cat. Pain 23: 145-158.
    • Dong YF, Tang JS, Yuan B, Jia H (1999). Morphine applied to the thalamic nucleus submedius produces a naloxone reversible antinociceptive effect in the rat. Neurosci Lett 271: 17-20.
    • Dubner R (1985). Specialization in nociceptive pathways: sensory discrimination, sensory modulation, and neural connectivity. Adv Pain Res Ther 9: 111-137.
    • Dugast C, Almeida A, Lima D (2003). The medullary dorsal reticular nucleus enhances the responsiveness of spinal nociceptive neurons to peripheral stimulation in the rat. Eur J Neurosci 18: 580-588.
    • Eltahawy HA, Saint-Cyr J, Poon YY, Moro E, Lang AE, Lozano AM (2004). Pallidal deep brain stimulation in cervical dystonia. Can J Neurol Sci 31: 328-332.
    • Fields HL, Basbaum AI (1999). Central nervous system mechanisms of pain modulation. In: Wall PD, Melzack R (Eds.) Textbook of Pain, 4th edn. Churchill Livingstone, Hong Kong, pp. 309-329.
    • Fields HL, Heinricher MM, Mason P (1991). Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14: 219-245.
    • Fitzgerald M, Koltzenburg M (1986). The functional development of descending inhibitory pathways in the dorsolateral funiculus of the newborn rat spinal cord. Brain Res 389: 261-270.
    • Franzini A, Ferroli P, Leone M, Broggi G (2003). Stimulation of the posterior hypothalamus for treatment of chronic intractable cluster headaches: first reported series. Neurosurgery 52: 1095-1099.
    • Gauriau C, Bernard JF (2002). Pain pathways and parabrachial circuits in the rat. Exp Physiol 87: 251-258.
    • Gear RW, Levine JD (1995). Antinociception produced by an ascending spino-supraspinal pathway. J Neurosci 15: 3154-3161.
    • Gebhart GF (2004). Descending modulation of pain. Neurosci Biobehav Rev 27: 729-737.
    • Gebhart GF, Sandkühler J, Thalhammer JG, Zimmermann M (1983). Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat. J Neurophysiol 50: 1433-1445.
    • Giesler GJ, Gerhart KD, Yezierski RP, Wilcox TK, Willis WD (1981). Postsynaptic inhibition of primate spinothalamic neurons by stimulation in nucleus raphe magnus. Brain Res 204: 184-188.
    • Gray BG, Dostrovsky JO (1983). Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. I. Effects on lumbar spinal cord nociceptive and non-nociceptive neurons. J Neurophysiol 49: 932-947.
    • Guo TZ, Jiang JY, Buttermann AE, Maze M (1996). Dexmedetomidine injection into the locus coeruleus produces antinociception. Anesthesiology 84: 873-881.
    • Hagelberg N, Jääskeläinen SK, Martikainen IK, Mansikka H, Forssell H, Scheinin H, Hietala J, Pertovaara A (2004). Striatal dopamine D2 receptors in modulation of pain in humans: a review. Eur J Pharmacol 500: 187-192.
    • Hall JG, Duggan AW, Morton CR, Johnson SM (1982). The location of brainstem neurones tonically inhibiting dorsal horn neurones of the cat. Brain Res 244: 215-222.
    • Hardy SG (1986). Projections to the midbrain from the medial versus lateral prefrontal cortices of the rat. Neurosci Lett 63: 159-164.
    • Heinricher MM, Morgan MM, Fields HL (1992). Direct and indirect actions of morphine on medullary neurons that modulate nociception. Neuroscience 48: 533-543.
    • Helmstetter FJ, Tershner SA, Poore LH, Bellgowan PS (1998). Antinociception following opioid stimulation of the basolateral amygdala is expressed through the periaqueductal gray and rostral ventromedial medulla. Brain Res 779: 104-118.
    • Hodge CJ Jr, Apkarian AV, Owen MP, Hanson BS (1983). Changes in the effects of stimulation of locus coeruleus and nucleus raphe magnus following dorsal rhizotomy. Brain Res 288: 325-329.
    • Hosobuchi Y (1986). Subcortical electrical stimulation for control of intractable pain in humans. Report of 122 cases (1970-1984). J Neurosurg 64: 543-553.
    • Iwamoto ET (1991). Characterization of the antinociception induced by nicotine in the pedunculopontine tegmental nucleus and the nucleus raphe magnus. J Pharmacol Exp Ther 257: 120-133.
    • Iwata K, Tsuboi Y, Tashiro A, Sakamoto M, Hagiwara S, Kohno M, Sumino R (1998). Mesencephalic projections from superficial and deep laminae of the medullary dorsal horn. J Oral Sci 40: 159-163.
    • Iwata K, Fukuoka T, Kondo E, Tsuboi Y, Tashiro A, Noguchi K, Masuda Y, Morimoto T, Kanda K (2002). Plastic changes in nociceptive transmission of the rat spinal cord with advancing age. J Neurophysiol 87: 1086-1093.
    • Jasmin L, Tien D, Weinshenker D, Palmiter RD, Green PG, Janni G, Ohara PT (2002). The NK1 receptor mediates both the hyperalgesia and the resistance to morphine in mice lacking noradrenaline. Proc Natl Acad Sci USA 99: 1029-1034.
    • Jasmin L, Granato A, Ohara PT (2004). Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 468: 425-440.
    • Jensen TS, Yaksh TL (1984). Spinal monoamine and opiate systems partly mediate the antinociceptive effects produced by glutamate at brainstem sites. Brain Res 321: 287-297.
    • Jones SL (1991). Descending noradrenergic influences on pain. Prog Brain Res 88: 381-394.
    • Kalmari J, Pertovaara A (2004). Colorectal distensioninduced suppression of a nociceptive somatic reflex response in the rat: modulation by tissue injury or inflammation. Brain Res 1018: 106-110.
    • Kamei J, Aoki T, Kasuya Y (1992). Periaqueductal gray matter stimulation-produced analgesia in diabetic rats. Neurosci Lett 142: 13-16.
    • Katayama Y, Yamamoto T, Kobayashi K, Kasai M, Oshima H, Fukaya C (2001). Motor cortex stimulation for post-stroke pain: comparison of spinal cord and thalamic stimulation. Stereotact Funct Neurosurg 77: 183-186.
    • Kauppila T, Kontinen VK, Pertovaara A (1998). Influence of spinalization on spinal withdrawal reflex responses varies depending on the submodality of the test stimulus and the experimental pathophysiological condition in the rat. Brain Res 797: 234-242.
    • Kawasaki Y, Kumamoto E, Furue H, Yoshimura M (2003). α2-Adrenoceptor-mediated presynaptic inhibition of primary afferent glutamatergic transmission in rat substantia gelatinosa neurons. Anesthesiology 98: 682-689.
    • Kosek E, Hansson P (1997). Modulatory influence on somatosensory perception from vibration and heterotopic noxious conditioning stimulation (HNCS) in fibromyalgia patients and healthy subjects. Pain 70: 41-51.
    • Krauss JK, Pohle T, Weigel R, Burgunder JM (2002). Deep brain stimulation of the centre median-parafascicular complex in patients with movement disorders. J Neurol Neurosurg Psychiatry 72: 546-548.
    • Kuraishi Y, Hirota N, Sato Y, Satoh M, Takagi H (1985). Noradrenergic inhibition of the release of substance P from primary afferents in the rabbit spinal dorsal horn. Brain Res 359: 177-182.
    • Kuroda R, Kawao N, Yoshimura H, Umeda W, Takemura M, Shigenaga Y, Kawabata A (2001). Secondary somatosensory cortex stimulation facilitates the antinociceptive effect of the NO synthase inhibitor through suppression of spinal nociceptive neurons in the rat. Brain Res 903: 110-116.
    • Kwiat GC, Basbaum AI (1992). The origin of brainstem noradrenergic and serotoninergic projections to the spinal cord dorsal horn in the rat. Somatosens Mot Res 9: 157-173.
    • Laird JM, Cervero F (1990). Tonic descending influences on receptive-field properties of nociceptive dorsal horn neurons in sacral spinal cord of rat. J Neurophysiol 63: 1022-1032.
    • Lakos S, Basbaum AI (1988). An ultrastructural study of the projections from the midbrain periaqueductal gray to spinally projecting, serotonin-immunoreactive neurons of the medullary nucleus raphe magnus in the rat. Brain Res 443: 383-388.
    • Lariviere WR, Melzack R (2000). The role of corticotrophinreleasing factor in pain and analgesia. Pain 84: 1-12.
    • Le Bars D, Dickenson AH, Besson JM (1979a). Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurones in the rat. Pain 6: 283-304.
    • Le Bars D, Dickenson AH, Besson JM (1979b). Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain 6: 305-327.
    • Leong SK, Shieh JY, Wong WC (1984). Localizing spinalcord-projecting neurons in neonatal and immature albino rats. J Comp Neurol 228: 18-23.
    • Levine R, Morgan MM, Cannon JT, Liebeskind JC (1991). Stimulation of the periaqueductal gray matter of the rat produces a preferential ipsilateral antinociception. Brain Res 567: 140-144.
    • Lewis JW, Terman GW, Watkins LR, Mayer DJ, Liebeskind JC (1983). Opioid and non-opioid mechanisms of footshockinduced analgesia: role of the spinal dorsolateral funiculus. Brain Res 267: 139-144.
    • Light AR, Casale EJ, Menetrey DM (1986). The effects of focal stimulation in nucleus raphe magnus and periaqueductal gray on intracellularly recorded neurons in spinal laminae I and II. J Neurophysiol 56: 555-571.
    • Lima D, Almeida A (2002). The medullary dorsal reticular nucleus as a pronociceptive centre of the pain control system. Prog Neurobiol 66: 81-108.
    • Lima D, Mendes-Ribeiro JA, Coimbra A (1991). The spinolatero-reticular system of the rat: projections from the superficial dorsal horn and structural characterization of marginal neurons involved. Neuroscience 45: 137-152.
    • Lorenz J, Minoshima S, Casey KL (2003). Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 126: 1079-1091.
    • Ma W, Eisenach JC (2003). Chronic constriction injury of sciatic nerve induces the up-regulation of descending inhibitory noradrenergic innervation to the lumbar dorsal horn of mice. Brain Res 970: 110-118.
    • Malmberg AB, Hedley LR, Jasper JR, Hunter JC, Basbaum AI (2001). Contribution of α2 receptor subtypes to nerve injuryinduced pain and its regulation by dexmedetomidine. Br J Pharmacol 132: 1827-1836.
    • Manning BH, Franklin KB (1998). Morphine analgesia in the formalin test: reversal by microinjection of quaternary naloxone into the posterior hypothalamic area or periaqueductal gray. Behav Brain Res 92: 97-102.
    • Mansikka H, Pertovaara A (1995). The role of α2-adrenoceptors of the medullary lateral reticular nucleus in spinal antinociception in rats. Brain Res Bull 37: 633-638.
    • Mansikka H, Idänpään-Heikkilä JJ, Pertovaara A (1996). Different roles of α2-adrenoceptors of the medulla versus the spinal cord in modulation of mustard oil-induced central hyperalgesia in rats. Eur J Pharmacol 297: 19-26.
    • Mansikka H, Lähdesmäki J, Scheinin M, Pertovaara A (2004). α2A-Adrenoceptors contribute to feedback inhibition of capsaicin-induced hyperalgesia. Anesthesiology 101: 185-190.
    • Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, Watson SJ (1994). Mu, delta and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 350: 412-438.
    • Martin RF, Haber LH, Willis WD (1979). Primary afferent depolarization of identified cutaneous fibers following stimulation in medial brain stem. J Neurophysiol 42: 779-790.
    • Mason P (1997). Physiologic identification of pontomedullary serotoninergic neurons in the rat. J Neurophysiol 77: 1087-1098.
    • Mayer DJ, Wolfle TL, Akil H, Carder B, Liebeskind JC (1971). Analgesia from electrical stimulation in the brainstem of the rat. Science 174: 1351-1354.
    • McNally GP (1999). Pain facilitatory circuits in the mammalian central nervous system: their behavioral significance and role in morphine analgesic tolerance. Neurosci Biobehav Rev 23: 1059-1078.
    • Meyerson BA (2001). Neurosurgical approaches to pain treatment. Acta Anaesthesiol Scand 45: 1108-1113.
    • Miki K, Zhou QQ, Guo W, Guan Y, Terayama R, Dubner R, Ren K (2002). Changes in gene expression and neuronal phenotype in brain stem pain modulatory circuitry after inflammation. J Neurophysiol 87: 750-760.
    • Millan MJ (2002). Descending control of pain. Prog Neurobiol 66: 355-474.
    • Millan MJ, Gramsch C, Przewlocki R, Hollt V, Herz A (1980). Lesions of the hypothalamic arcuate nucleus produce a temporary hyperalgesia and attenuate stress-evoked analgesia. Life Sci 27: 1513-1523.
    • Millar J, Williams GV (1989). Effect of iontophoresis of noradrenaline and stimulation of the periaqueductal gray on single-unit activity in the rat superficial dorsal horn. J Comp Neurol 287: 119-133.
    • Mogil JS, Sternberg WF, Balian H, Liebeskind JC, Sadowski B (1996). Opioid and nonopioid swim stress-induced analgesia: a parametric analysis in mice. Physiol Behav 59: 123-132.
    • Mokha SS, McMillan JA, Iggo A (1986). Pathways mediating descending control of spinal nociceptive transmission from the nuclei locus coeruleus (LC) and raphe magnus (NRM) in the cat. Exp Brain Res 61: 597-606.
    • Morgan MM, Sohn JH, Liebeskind JC (1989). Stimulation of the periaqueductal gray matter inhibits nociception at the supraspinal as well as spinal level. Brain Res 502: 61-66.
    • Morgan MM, Gold MS, Liebeskind JC, Stein C (1991). Periaqueductal gray stimulation produces a spinally mediated, opioid antinociception for the inflamed hindpaw of the rat. Brain Res 545: 17-23.
    • Morton CR, Duggan AW, Zhao ZQ (1984). The effects of lesion of medullary midline and lateral reticular areas on inhibition in the dorsal horn produced by periaqueductal grey stimulation in the cat. Brain Res 301: 121-130.
    • Morton CR, Siegel J, Xiao HM, Zimmermann M (1997). Modulation of cutaneous nociceptor activity by electrical stimulation in the brain stem does not inhibit the nociceptive excitation of dorsal horn neurons. Pain 71: 65-70.
    • Nandi D, Aziz T, Carter H, Stein J (2003). Thalamic field potentials in chronic central pain treated by periventricular gray stimulation - a series of eight cases. Pain 101: 97-107.
    • Newman DB (1985). Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. I. Medullary nuclei. J Hirnforsch 26: 187-226.
    • North RA, Yoshimura M (1984). The actions of noradrenaline on neurones of the rat substantia gelatinosa in vitro. J Physiol (Lond) 349: 43-55.
    • Olave MJ, Maxwell DJ (2003). Neurokinin-1 projection cells in the rat dorsal horn receive synaptic contacts from axons that possess α2C-adrenergic receptors. J Neurosci 23: 6837-6846.
    • Ossipov MH, Gebhart GF (1986). Opioid, cholinergic and alpha-adrenergic influences on the modulation of nociception from the lateral reticular nucleus of the rat. Brain Res 384: 282-293.
    • Paredes J, Winters RW, Schneiderman N, McCabe PM (2000). Afferents to the central nucleus of the amygdala and functional subdivisions of the periaqueductal gray: neuroanatomical substrates for affective behavior. Brain Res 887: 157-173.
    • Peng YB, Lin Q, Willis WD (1996). Involvement of alpha-2 adrenoceptors in the periaqueductal gray-induced inhibition of dorsal horn cell activity in rats. J Pharmacol Exp Ther 278: 125-135.
    • Pertovaara A (1993). Antinociception induced by alpha-2- adrenoceptor agonists, with special emphasis on medetomidine studies. Prog Neurobiol 40: 691-709.
    • Pertovaara A (1999). The influence of stimulus temperature rise rate, adapting temperature, and stimulus duration on suprathreshold responses evoked by noxious heat in the glabrous skin of the limb. Comparison of neuronal discharge in the rat spinal dorsal horn with human sensations. Exp Brain Res 126: 482-494.
    • Pertovaara A (2000). Plasticity in descending pain modulatory systems. Prog Brain Res 129: 231-242.
    • Pertovaara A, Kemppainen P, Johansson G, Karonen SL (1982). Ischemic pain nonsegmentally produces a predominant reduction of pain and thermal sensitivity in man: a selective role for endogenous opioids. Brain Res 251: 83-92.
    • Pertovaara A, Hämäläinen MM, Kauppila T, Mecke E, Carlson S (1994). Dissociation of the α2-adrenergic antinociception from sedation following microinjection of medetomidine into the locus coeruleus in rats. Pain 57: 207-215.
    • Pertovaara A, Kontinen VK, Kalso E (1997). Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat. Exp Neurol 147: 428-436.
    • Pertovaara A, Wei H, Kalmari J, Ruotsalainen M (2001). Pain behavior and response properties of spinal dorsal horn neurons following experimental diabetic neuropathy in the rat: modulation by nitecapone, a COMT inhibitor with antioxidant properties. Exp Neurol 167: 425-434.
    • Petrovic P, Kalso E, Petersson KM, Ingvar M (2002). Placebo and opioid analgesia - imaging a shared network. Science 295: 1737-1740.
    • Porreca F, Ossipov MH, Gebhart GF (2002). Chronic pain and medullary descending facilitation. Trends Neurosci 25: 319-325.
    • Proudfit HK (1988). Pharmacologic evidence for the modulation of nociception by noradrenergic neurons. Prog Brain Res 77: 357-370.
    • Rainov NG, Heidecke V (2003). Motor cortex stimula-tion for neuropathic facial pain. Neurol Res 25: 157-161.
    • Rees H, Roberts MH (1993). The anterior pretectal nucleus: a proposed role in sensory processing. Pain 53: 121-135.
    • Ren K, Dubner R (1996). Enhanced descending modulation of nociception in rats with persistent hindpaw inflammation. J Neurophysiol 76: 3025-3037.
    • Ren K, Dubner R (2002). Descending modulation in persistent pain: an update. Pain 100: 1-6.
    • Reynolds DV (1969). Surgery in the rat during electrical analgesia induced by focal brain stimulation. Science 164: 444-445.
    • Rivot JP, Weil-Fugazza J, Godefroy F, Bineau-Thurotte M, Ory-Lavollée, Besson JM (1984). Involvement of serotonin in both morphine and stimulation-produced analgesia: electrochemical and biochemical approaches. Adv Pain Res Ther 6: 135-150.
    • Ruda MA, Bennett GJ, Dubner R (1986). Neurochemistry and neural circuitry in the dorsal horn. Prog Brain Res 66: 219-268.
    • Rudomin P, Schmidt RF (1999). Presynaptic inhibition in the vertebrate spinal cord revisited. Exp Brain Res 129: 1-37.
    • Saab CY, Willis WD (2002). Cerebellar stimulation modulates the intensity of a visceral nociceptive reflex in the rat. Exp Brain Res 146: 117-121.
    • Saitoh Y, Hirano S-I, Kato A, Kishima H, Hirata M, Yamamoto K, Yoshimine T (2001). Motor cortex stimulation for deafferentation pain. Neurosurg Focus 11: 1-5.
    • Sakata S, Shima F, Kato M, Fukui M (1989). Dissociated mesencephalic responses to medial and ventral thalamic nuclei stimulation in rats. Relationship to analgesic mechanisms. J Neurosurg 70: 446-453.
    • Sandkühler J (1996) The organization and function of endogenous antinociceptive systems. Prog Neurobiol 50: 49-81.
    • Sandkühler J, Liu X (1998). Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury. Eur J Neurosci 10: 2476-2480.
    • Schaible HG, Neugebauer V, Cervero F, Schmidt RF (1991). Changes in tonic descending inhibition of spinal neurons with articular input during the development of acute arthritis in the cat. J Neurophysiol 66: 1021-1032.
    • Sim LJ, Joseph SA (1991). Arcuate nucleus projections to brainstem regions which modulate nociception. J Chem Neuroanat 4: 97-109.
    • Sim LJ, Joseph SA (1992). Efferent projections of the nucleus raphe magnus. Brain Res Bull 28: 679-682.
    • Sol JC, Casaux J, Roux FE, Lotterie JA, Bousquet P, Verdie JC, Mascott C, Lazorthes Y (2001). Chronic motor cortex stimulation for phantom limb pain: correlations between pain relief and functional imaging studies. Stereotact Funct Neurosurg 77: 172-176.
    • Sotres-Bayon F, Torres-Lopez E, Lopez-Avila A, del Angel R, Pellicer F (2001). Lesion and electrical stimulation of the ventral tegmental area modify persistent nociceptive behavior in the rat. Brain Res 898: 342-349.
    • Stanfa LC, Dickenson AH (1994). Enhanced α2-adrenergic controls and spinal morphine potency in inflammation. NeuroReport 5: 469-472.
    • Staud R, Robinson ME, Vierck CJ Jr, Price DD (2003). Diffuse noxious inhibitory controls (DNIC) attenuate temporal summation of second pain in normal males but not in normal females or fibromyalgia patients. Pain 101: 167-174.
    • Stone L, MacMillan LB, Kitto KF, Limbird LE, Wilcox GL (1997). The alpha-2A-adrenergic receptor subtype mediates spinal analgesia evoked by alpha-2-agonists and is necessary for spinal adrenergic-opioid synergy. J Neurosci 17: 7157-7165.
    • Stone LS, Broberger C, Vulchanova L, Wilcox GL, Hökfelt T, Riedl MS, Elde R (1998). Differential distribution of alpha2A and alpha2C adrenergic receptor immunoreactivity in the rat spinal cord. J Neurosci 18: 5928-5937.
    • Suzuki R, Rygh LJ, Dickenson AH (2004). Bad news from the brain: 5-HT pathways that control spinal pain processing. Trends Pharmacol Sci 25: 613-617.
    • Tasker RR (1982). Identification of pain processing systems by electrical stimulation of the brain. Hum Neurobiol 1: 261-272.
    • Tavares I, Lima D (1994). Descending projections from the caudal medulla oblongata to the superficial or deep dorsal horn of the rat spinal cord. Exp Brain Res 99: 455-463.
    • Tavares I, Lima D (2002). The caudal ventrolateral medulla as an important inhibitory modulator of pain transmission in the spinal cord. J Pain 3: 337-346.
    • Terman GW, Bonica JJ (2001). Spinal mechanisms and their modulation. In: (Loeser JD, Butler SH, Chapman CR, Turk DC, (Eds.) Bonica´s Management of Pain 3rd edn. Lippincott Williams & Wilkins, New York, pp. 73-152.
    • Tracey D (2004). Ascending and descending pathways in the spinal cord. In: Paxinos, (Ed.), The Rat Nervous System 3rd edn. Elsevier pp. 149-163.
    • Truesdell LS, Bodnar RJ (1987). Reduction in cold-water swim analgesia following hypothalamic paraventricular nucleus lesions. Physiol Behav 39: 727-731.
    • Tsuruoka M, Willis WD (1996). Bilateral lesions in the area of the nucleus locus coeruleus affect the development of hyperalgesia during carrageenan-induced inflammation. Brain Res 726: 233-236.
    • Tsuruoka M, Maeda M, Nagasawa I, Inoue T (2004). Spinal pathways mediating coerulospinal antinociception in the rat. Neurosci Lett 362: 236-239.
    • Urban MO, Gebhart GF (1999). Supraspinal contributions to hyperalgesia. Proc Natl Acad Sci USA 96: 7687-7692.
    • Vanegas H, Schaible HG (2004). Descending control of persistent pain: inhibitory or facilitatory? Brain Res Rev 46: 295-309.
    • Vilela Filho O (1994). Thalamic ventrobasal stimulation for pain relief. Probable mechanisms, pathways and neurotransmitters. Arch Neuropsychiatry 52: 578-584.
    • Wang XM, Yuan B, Hou ZL (1992). Role of the deep mesencephalic nucleus in the antinociception induced by stimulation of the anterior pretectal nucleus in rats. Brain Res 577: 321-325.
    • Watkins LR, Mayer DJ (1982). Organization of endogenous opiate and nonopiate pain control systems. Science 216: 1185-1192.
    • Weil-Fugazza J, Godefroy F, Manceau V, Besson JM (1986). Increased norepinephrine and uric acid levels in the spinal cord of arthritic rats. Brain Res 374: 190-194.
    • West WL, Yeomans DC, Proudfit HK (1993). The function of noradrenergic neurons in mediating antinociception induced by electrical stimulation of the locus coeruleus in two different sources of Sprague-Dawley rats. Brain Res 626: 127-135.
    • Westlund KN, Carlton SM, Zhang D, Willis WD (1990). Direct catecholaminergic innervation of primate spinothalamic tract neurons. J Comp Neurol 299: 178-186.
    • Willer JC, Roby A, Le Bars D (1984). Psychophysical and electrophysiological approaches to the pain-relieving effects of heterotopic nociceptive stimuli. Brain 107: 1095-1112.
    • Willis WD Jr, Coggeshall RE (1991). Sensory Mechanisms of the Spinal Cord. 2nd edn. Plenum Press, New York.
    • Witting N, Svensson P, Jensen TS (2003). Differential recruitment of endogenous pain inhibitory systems in neuropathic pain patients. Pain 103: 75-81.
    • Xu XJ, Puke MJC, Wiesenfeld-Hallin Z (1992). The depressive effect of intrathecal clonidine on the spinal flexor reflex is enhanced after sciatic nerve section in rats. Pain 51: 145-151.
    • Xu M, Kontinen VK, Kalso E (1999). Endogenous noradrenergic tone controls symptoms of allodynia in the spinal nerve ligation model of neuropathic pain. Eur J Pharmacol 366: 41-45.
    • Yaksh TL (1985). Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol Biochem Behav 22: 845-858.
    • Yaksh TL (1997). Pharmacology and mechanisms of opioid analgesic activity. Acta Anaesthesiol Scand 41: 94-111.
    • Yeomans DC, Clark FM, Paice JA, Proudfit HK (1992). Antinociception induced by electrical stimulation of spinally projecting noradrenergic neurons in the A7 catecholamine cell group of the rat. Pain 48: 449-461.
    • Yezierski RP (1988). Spinomesencephalic tract: projections from the lumbosacral spinal cord of the rat, cat, and monkey. J Comp Neurol 267: 131-146.
    • Yezierski RP, Gerhart KD, Schrock BJ, Willis WD (1983). A further examination of effects of cortical stimulation on primate spinothalamic tract cells. J Neurophysiol 49: 424-441.
    • Zemlan FP, Behbehani MM (1988). Nucleus cuneiformis and pain modulation: anatomy and behavioral pharmacology. Brain Res 453: 89-102.
    • Zhuo M, Gebhart GF (1990). Characterization of descending inhibition and facilitation from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat. Pain 42: 337-350.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • FCT | POCTI/NSE/46399/2002

Cite this article