Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Potter, Christopher S; Randerson, James T; Field, Christopher B; Matson, Pamela A; Vitousek, Peter M; Mooney, Harold A; Klooster, Steven A (1993)
Publisher: eScholarship, University of California
Languages: English
Types: Article
Subjects: Physical Sciences and Mathematics, soil organic-matter, high-resolution radiometer, microbial biomass, vegetation index, canopy reflectance, CO2 concentrations, solar-radiation, tropical soils, climate change, particle-size
This paper presents a modeling approach aimed at seasonal resolution of global climatic and edaphic controls on patterns of terrestrial ecosystem production and soil microbial respiration. We use satellite imagery (Advanced Very High Resolution Radiometer and International Satellite Cloud Climatology Project solar radiation), along with historical climate (monthly temperature and precipitation) and soil attributes (texture, C and N contents) from global (1°) data sets as model inputs. The Carnegie-Ames-Stanford approach (CASA) Biosphere model runs on a monthly time interval to simulate seasonal patterns in net plant carbon fixation, biomass and nutrient allocation, litterfall, soil nitrogen mineralization, and microbial CO2 production. The model estimate of global terrestrial net primary production is 48 Pg C yr−1 with a maximum light use efficiency of 0.39 g C MJ−1PAR. Over 70% of terrestrial net production takes place between 30°N and 30°S latitude. Steady state pools of standing litter represent global storage of around 174 Pg C (94 and 80 Pg C in nonwoody and woody pools, respectively), whereas the pool of soil C in the top 0.3 m that is turning over on decadal time scales comprises 300 Pg C. Seasonal variations in atmospheric CO2 concentrations from three stations in the Geophysical Monitoring for Climate Change Flask Sampling Network correlate significantly with estimated net ecosystem production values averaged over 50°–80° N, 10°–30° N, and 0°–10° N.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article