LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Herstedt, Marie (2003)
Publisher: Uppsala : Acta Universitatis Upsaliensis
Languages: English
Types: Doctoral thesis
Subjects: Inorganic chemistry, lithium-ion batteries, photoelectron spectroscopy, surface film, thermal stability, electrolyte additive, graphite, lithium iron phosphate, Oorganisk kemi
Surface film formation at the electrode/electrolyte interface in lithium-ion batteries has a crucial impact on battery performance and safety. This thesis describes the characterisation and treatment of electrode interfaces in lithium-ion batteries. The focus is on interface modification to improve battery safety, in particular to enhance the onset temperature for thermally activated reactions, which also can have a negative influence on battery performance. Photoelectron Spectroscopy (PES) and Differential Scanning Calorimetry (DSC) are used to investigate the surface chemistry of electrodes in relation to their electrochemical performance. Surface film formation and decomposition reactions are discussed. The upper temperature limit for lithium-ion battery operation is restricted by exothermic reactions at the graphite anode; the onset temperature is shown to be governed by the composition of the surface film on the anode. Several electrolyte salts, additives and an anion receptor have been exploited to modify the surface film composition. The most promising thermal behaviour is found for graphite anodes cycled with the anion receptor, tris(pentafluorophenyl)borane, which reduces salt reactions and increases the onset temperature from ~80 °C to ~150 °C. The electrochemical performance and surface chemistry of Swedish natural graphite, carbon-treated LiFePO4 and anodes from high-power lithium-ion batteries are also investigated. Jet-milled Swedish natural graphite exhibits a high capacity and rate capability, together with a decreased susceptibility to solvent co-intercalation. Carbon-treated LiFePO4 shows promising results: no solvent reaction products are detected. The amount of salt compounds increases, with power fade occurring for anodes from high-power lithium-ion batteries; the solvent reduction products comprise mainly Li-carboxylate type compounds.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok