LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Thorstad, Eva Bonsak; Todd, Christopher D.; Uglem, Ingebrigt; Bjørn, Pål Arne; Gargan, Patrick G.; Vollset, Knut Wiik; Halttunen, Elina; Kålås, Steinar; Berg, Marius; Finstad, Bengt (2015)
Publisher: Inter-Research
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: animal diseases, endocrine system, parasitic diseases, skin and connective tissue diseases, animal structures
Identifiers:doi:10.3354/aei00142
- Salmon farming increases the abundance of salmon lice, which are ectoparasites of salmonids in the sea. Here we review the current knowledge on the effects of salmon lice on wild sea trout. Salmon lice feed on host mucus, skin and muscle, and infestation may induce osmoregulatory dysfunction, physiological stress, anaemia, reduced feeding and growth, increased susceptibility to secondary infections, reduced disease resistance and ultimately mortality of individual sea trout. Wild sea trout in farm-free areas generally show low lice levels. In farm-intensive areas, lice levels on wild sea trout are typically higher, and more variable than in farm-free areas. Lice on wild sea trout are found at elevated levels particularly within 30 km of the nearest farms but can also extend to further ranges. Salmon lice in intensively farmed areas have negatively impacted wild sea trout populations by reducing growth and increasing marine mortality. Quantification of these impacts remains a challenge, although population-level effects have been quantified in Atlantic salmon by comparing the survival of chemically protected fish with control groups, which are relevant also for sea trout. Mortality attributable to salmon lice can lead to an average of 12−29% fewer salmon spawners. Reduced growth and increased mortality will reduce the benefits of marine migration for sea trout, and may also result in selection against anadromy in areas with high lice levels. Salmon lice-induced effects on sea trout populations may also extend to altered genetic composition and reduced diversity, and possibly to the local loss of sea trout, and establishment of exclusively freshwater resident populations. Salmon lice · Lepeophtheirus salmonis · Sea trout · Salmo trutta · Parasite · Aquaculture · Salmon farming

Share - Bookmark

Cite this article