LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Radwan, Alzahraa Mohamed Ahmed (2014)
Languages: English
Types: Research
Subjects: doctoral thesis
ddc: ddc:57, ddc:5
Die Produktqualität von Arzneipflanzen hängt von der Qualität und Quantität der jeweiligen Naturstoffe ab. Eine gezielte Beeinflussung setzt ein umfassendes Wissen über die Biosynthese und deren Regulation voraus. Dabei kommt den komplexen Wechselwirkungen zwischen Stress- und Sekundärstoffwechsel eine besondere Bedeutung zu. Diese Untersuchung zielte darauf ab, exemplarisch die Auswirkungen von Trockenstress auf die Biosynthese und Akkumulation von Monoterpenen in Salbei zu erfassen. Dabei wurde zum einen die Eignung der Dehydrine als molekulare Stressmarker untersucht und zum anderen die Expression der Monoterpen-Synthasen bestimmt. Das Dehydrin-Gen SoDHN wurde aus Salbei-Blättern isoliert. Die cDNA-Sequenz mit einer Gesamtlänge von 1000 bp weist ein putatives offenes Leseraster von 735 bp auf (Zugangsnummer AEB77936.1). SoDHN ist in Blättern konstitutiv exprimiert, doch seine Expression wird bei Stress signifikant erhöht. Western-Blot-Analysen ergaben, dass auch die Menge des SoDHN-Proteins, das bereits in nicht gestressten Blättern vorhanden ist, bei Trockenstress deutlich gesteigert wird. Im Gegensatz zur transienten Genexpression, bleibt die Menge des Dehydrin-Proteins während des gesamten Zeitraums stabil. Zur Evaluierung des Stress-Status muss also neben der Genexpression auch die Abundanz des Proteins erfasst werden. Trockenstress beeinflusst auch die Expression der Monoterpen-Synthasen; so werden z.B. die mRNA-Menge der Bornyldiphosphat-Synthase und der Cineol-Synthase bereits 2h nach dem Abtrennen der Blätter stark erhöht und erreichen ihr maximales Level nach 6h. Offensichtlich wird die Monoterpen-Biosynthese – neben der “passiven“ Steigerung aufgrund der Trockenstress-induzierten überreduzierten Zustände – auch "aktiv" durch die Erhöhung der Biosynthese-Kapazität gesteigert. Dies zeigt, dass die Monoterpene - neben ihren ökologischen Funktionen – auch an der Dissipation des massiven Energie-Überangebots unter Trockenstress beteiligt sind. The product quality of medicinal plants is determined by the quality and quantity of the particular natural products. Deliberate modifications require a comprehensive knowledge on the biosynthetic pathways and their regulations. In this context, the complex interactions between stress and secondary metabolism are of special interest. This study was aimed to elucidate exemplarily the impact of drought stress on the biosynthesis and accumulation of monoterpenes in sage. For this, the applicability of dehydrins as molecular stress markers as well as the gene expression of monoterpene synthases had been studied. Dehydrin gene SoDHN was isolated from sage leaves. The cDNA sequence exhibits a total length of 1000 bp with a putative open reading frame of 735 bp (accession number: AEB77936.1). SoDHN is constitutively expressed in leaves; however, its expression is significantly increased by drought stress. Western blot analysis revealed that the SoDHN protein also is already present in non-stressed leaves; nevertheless, the accumulation of dehydrin protein is significantly enhanced under drought stress. In contrast to the transient transcription, the abundance of the dehydrin protein remained stable throughout the entire period. Thus, for evaluating the stress status, in addition to the gene expression also the abundance of the protein has to be determined. Drought stress also impacts on the expression of monoterpene synthases; e.g. the amounts of mRNA for bornyl diphosphate synthase and cineole synthase already are strongly enhanced 2h after detaching the leaves and reach a maximum after 6h. Obviously, the monoterpene biosynthesis is – apart from the “passive” enhancement due to the drought-related over-reduced states – also “actively” increased by enhancing the biosynthetic capacity. This points out that monoterpenes – apart from their ecological functions – also are relevant to the dissipation of the massive over-supply of energy generated in leaves under drought stress.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ahmad, P., Sarwat, M., and Sharma, S. (2008). Reactive oxygen species, antioxidants and signaling in plants. J. Plant Biol. 51, 167-173.
    • Akhondzadeh, S., Noroozian, M., Mohammadi, M., Ohadinia, S., Jamshidi, A.H., and Khani, M. (2003).
    • Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer's disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther 28, 53-59.
    • Allagulova, C.R., Gimalov, F.R., Shakirova, F.M., and Vakhitov, V.A. (2003). The plant dehydrins: structure and putative functions. Biochemistry Mosc. 68, 945-951.
    • Almeida, J.R.G. da S., Souza, G.R., Silva, J.C., Saraiva, S.R.G. de L., R.G., Oliveira, A.D., Quintans, J. de S.S., Barreto, R. de S.S., Bonjardim, L.R., et al. (2013). Borneol, a bicyclic monoterpene alcohol, reduces nociceptive behavior and inflammatory response in mice. The Scientific World Journal 2013.
    • Alscher, R.G., Erturk, N., and Heath, L.S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot. 53, 1331-1341.
    • Alsheikh, M.K., Heyen, B.J., and Randall, S.K. (2003). Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. J. Biol. Chem. 278, 40882-40889.
    • Alsheikh M.K, Svensson J.T, Randall S.K. (2005). Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant, Cell and Environment 28, 1114-1122.
    • Anke, S., Gondé, D., Kaltenegger, E., Hänsch, R., Theuring, C., and Ober, D. (2008). Pyrrolizidine Alkaloid Biosynthesis in Phalaenopsis Orchids: Developmental Expression of Alkaloid-Specific Homospermidine Synthase in Root Tips and Young Flower Buds. Plant Physiol. 148, 751-760.
    • Asada, K. (2000). The water-water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond B Biol Sci 355, 1419-1431.
    • Ashour, M., Wink, M., and Gershenzon, J. (2010). Biochemistry of Terpenoids: Monoterpenes, Sesquiterpenes and Diterpenes. In Annual Plant Reviews Volume 40: Biochemistry of Plant Secondary Metabolism, M. Winkessor, ed. (Wiley-Blackwell), pp. 258-303.
    • Bae, E.K., Lee, H., Lee, J.S., and Noh, E.W. (2009). Differential expression of a poplar SK2-type dehydrin gene in response to various stresses. BMB Rep 42, 439-443.
    • Baker, N.R., and Leech, R.M. (1977). Development of Photosystem I and Photosystem II Activities in Leaves of Light-grown Maize (Zea mays) 1. Plant Physiol 60, 640-644.
    • Balandrin, M.F., and Klocke, J.A. (1988). Medicinal, Aromatic, and Industrial Materials from Plants. In Medicinal and Aromatic Plants I, P.D.Y.P.S. Bajaj, ed. (Springer Berlin Heidelberg), pp. 3-36.
    • Basyuni, M., Baba, S., Inafuku, M., Iwasaki, H., Kinjo, K., and Oku, H. (2009). Expression of terpenoid synthase mRNA and terpenoid content in salt stressed mangrove. J. Plant Physiol. 166, 1786-1800.
    • Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., and Covarrubias, A.A. (2008). The Enigmatic LEA Proteins and Other Hydrophilins. Plant Physiol. 148, 6-24.
    • Bechtold, U., Albihlal, W.S., Lawson, T., Fryer, M.J., Sparrow, P.A.C., Richard, F., Persad, R., Bowden, L., Hickman, R., Martin, C., et al. (2013). Arabidopsis heat shock transcription factora1b overexpression enhances water productivity, resistance to drought, and infection. J. Exp. Bot. 64, 3467-3481.
    • Beck, E.H., Fettig, S., Knake, C., Hartig, K., and Bhattarai, T. (2007). Specific and unspecific responses of plants to cold and drought stress. J Biosci 32, 501-510.
    • Bennett, R.N., and Wallsgrove, R.M. (1994). Secondary metabolites in plant defence mechanisms. New Phytologist 127, 617-633.
    • Bernotiene G. D., Nivinskiene O., Butkiene R., and Mockute D. (2007). Essential oil composition variability in sage (Salvia officinalis L.). Chemija 18:38-43.
    • Berta, G., Altamura, M.M., Fusconi, A., Cerruti, F., Capitani, F., and Bagni, N. (1997). The plant cell wall is altered by inhibition of polyamine biosynthesis. New Phytologist 137, 569-577.
    • Bettaieb, I., Zakhama, N., Wannes, W.A., Kchouk, M.E., and Marzouk, B. (2009). Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Scientia Horticulturae 120, 271-275.
    • Biswas, K.K., Foster, A.J., Aung, T., and Mahmoud, S.S. (2009). Essential oil production: relationship with abundance of glandular trichomes in aerial surface of plants. Acta Physiol Plant 31, 13-19.
    • Bohle, K., Jungebloud, A., Göcke, Y., Dalpiaz, A., Cordes, C., Horn, H., and Hempel, D.C. (2007). Selection of reference genes for normalisation of specific gene quantification data of Aspergillus niger. J.
    • Biotechnol. 132, 353-358.
    • Bohnert, H., Nelson, D., and Jensen, R. (1995). Adaptations to Environmental Stresses. Plant Cell 7, 1099- 1111.
    • Borovskii, G.B., Stupnikova, I.V., Antipina, A.I., and Voinikov, V.K. (2000). Accumulation of proteins immunochemically related to dehydrins in mitochondria of plants exposed to low temperature. Dokl.
    • Biochem. 371, 46-49.
    • Borovskii, G.B., Stupnikova, I.V., Antipina, A.I., Vladimirova, S.V., and Voinikov, V.K. (2002). Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol. 2, 5.
    • Bouvier, F., Rahier, A., and Camara, B. (2005). Biogenesis, molecular regulation and function of plant isoprenoids. Prog. Lipid Res. 44, 357-429.
    • Bravo L.A, Ulloa N., Zúñiga G.E., Casanova A., Corcuera L.J., Alberdi M.(2001). Cold resistance in Antarctic angiosperms. Physiol Plant111:55-65 Bytof, G., Knopp, S.-E., Schieberle, P., Teutsch, I., Selmar, D. ( 2005). Influence of pro-cessing on the generation of γ- aminobutyric acid in green coffee beans. Eur. Food Res. Technol. 220, 245-250.
    • Campbell, S.A., and Close, T.J. (1997). Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytologist 137, 61-74.
    • Chaves, M.M., Maroco, J.P., and Pereira, J.S. (2003). Understanding plant responses to drought - from genes to the whole plant. Functional Plant Biol. 30, 239-264.
    • Chen, F., Tholl, D., Bohlmann, J., and Pichersky, E. (2011). The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom.
    • Plant J. 66, 212-229.
    • Chen, H.X., Gao, H.Y., An, S.Z., and Li, W.J. (2004). Dissipation of Excess Energy in Mehler-Peroxidase Reaction in Rumex Leaves During Salt Shock. Photosynthetica 42, 117-122.
    • Cheng, A.X., Lou, Y.G., Mao, Y.B., Lu, S., Wang, L.J., and Chen, X.-Y. (2007). Plant Terpenoids: Biosynthesis and Ecological Functions. Journal of Integrative Plant Biology 49, 179-186.
    • Choi, D.-W., Zhu, B., and Close, T.J. (1999). The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet 98, 1234-1247.
    • Cho, Y., Njitiv, N., Chen, X., Lightfood, D.A. and Wood, A.J, (2003). Trigonelline concen-tration in fieldgrown soybean in response to irrigation. Biol. Plant. 46 (3), 405-410.
    • Christiansen, J.L., J∅rnsgard, B., Buskov, S., Olsen, C.E. (1997). Effect of drought stress on content and composition of seed alkaloids in narrow-leafed lupin, Lupinus angustifolius L. Eur. J. Agron. 7, 307-314.
    • Close, T. (1997). Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiologia Plantarum 100, 291-296.
    • Close, T.J. (1996). Dehydrins: Emergence of a biochemical role of a family of plant dehydration proteins.
    • Physiologia Plantarum 97, 795-803.
    • Close, T.J., Kortt, A.A., and Chandler, P.M. (1989). A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol. Biol. 13, 95-108.
    • Close, T. J., Lammers P. J. (1993). An osmotic stress protein of cyanobacteria is immunologically related to plant dehydrins. Plant Physiol 101: 773-779 Corsi, G, and Bottega, S. (1999). Glandular hairs of Salvia officinalis: New data on morphology, localization and histochemistry in relation to function. Annals of Botany 84: 657-664.
    • Danyluk, J., Houde, M., Rassart, É., and Sarhan, F. (1994). Differential expression of a gene encoding an acidic dehydrin in chilling sensitive and freezing tolerant gramineae species. FEBS Letters 344, 20-24.
    • Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., and Sarhan, F. (1998).
    • Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10, 623-638.
    • De Abreu, I.N. and Mazzafera, P. (2005). Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol. Biochem. 43, 241-248.
    • Demirci, B., Hüsnü Can Başer, K., Yıldız, B., and Bahçecioǧlu, Z. (2003). Composition of the essential oils of six endemic Salvia spp. from Turkey. Flavour and Fragrance Journal 18, 116-121.
    • Deng, Z., Pang, Y., Kong, W., Chen, Z., Wang, X., Liu, X., Pi, Y., Sun, X., and Tang, K. (2005). A novel ABAdependent dehydrin ERD10 gene from Brassica napus. DNA Seq. 16, 28-35.
    • Dereeper, A., Audic, S., Claverie, J.-M., and Blanc, G. (2010). BLAST-EXPLORER helps you building datasets for phylogenetic analysis. BMC Evol. Biol. 10, 8.
    • Du, J.-B., Yuan, S., Chen, Y.-E., Sun, X., Zhang, Z.-W., Xu, F., Yuan, M., Shang, J., and Lin, H.-H. (2011).
    • Comparative expression analysis of dehydrins between two barley varieties, wild barley and Tibetan hulless barley associated with different stress resistance. Acta Physiol Plant 33, 567-574.
    • Dubey, V.S., Bhalla, R., and Luthra, R. (2003). An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J. Biosci. 28, 637-646.
    • Dunker, A. K., Brown, C. J., Lawson, J. D., Iakoucheva, L. M., and Obradovic, Z. (2002). Intrinsic disorder and protein function. Biochemistry, 41:6573-6582.
    • Dweck, A. C. (2000): The folklore and cosmetic use of various Salvia species. In: Kintzios, S. E. (Ed.), SAGE - The Genus Salvia. Harwood Academic Publishers, Amsterdam, Pp. 1-25.
    • Dyson, H.J., and Wright, P.E. (2005). Intrinsically unstructured proteins and their functions. Nat. Rev.
    • Mol. Cell Biol. 6, 197-208.
    • Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput.
    • Nucleic Acids Res. 32, 1792-1797.
    • Godoy, J.A., Lunar, R., Torres-Schumann, S., Moreno, J., Rodrigo, R.M., and Pintor-Toro, J.A. (1994).
    • Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26, 1921-1934.
    • Grausgruber-Gröger, S., Schmiderer, C., Steinborn, R., and Novak, J. (2012). Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae). J. Plant Physiol. 169, 353-359.
    • Guiltinan, M.J., Marcotte, W.R., Jr, and Quatrano, R.S. (1990). A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250, 267-271.
    • Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Li, R., von Korff, M., Varshney, R.K., Graner, A., and Valkoun, J. (2009). Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J. Exp. Bot. 60, 3531-3544.
    • Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., and Masmoudi, K. (2011). Plant dehydrins and stress tolerance. Plant Signal Behav 6, 1503-1509.
    • Harborne, J.B. (1990). Role of secondary metabolites in chemical defence mechanisms in plants. Ciba Found. Symp. 154, 126-134; discussion 135-139.
    • Hara, M. (2010). The multifunctionality of dehydrins: An overview. Plant Signal Behav 5.
    • Hara, M., Fujinaga, M., and Kuboi, T. (2004). Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol. Biochem. 42, 657-662.
    • Hara, M., Fujinaga, M., and Kuboi, T. (2005). Metal binding by citrus dehydrin with histidine-rich domains. J. Exp. Bot. 56, 2695-2703.
    • Hara M, Terashima S, Fukaya T, Kuboi T. (2003). Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217, 290-298.
    • Hara, M., Shinoda, Y., Kubo, M., Kashima, D., Takahashi, I., Kato, T., Horiike, T., and Kuboi, T. (2011).
    • Biochemical characterization of the Arabidopsis KS-type dehydrin protein, whose gene expression is constitutively abundant rather than stress dependent. Acta Physiol Plant 33, 2103-2116.
    • Hara, M., Kondo, M., and Kato, T. (2013). A KS-type dehydrin and its related domains reduce Cupromoted radical generation and the histidine residues contribute to the radical-reducing activities.
    • Journal of Experimental Botany 64, 1615-1624.
    • Harb, A., Krishnan, A., Ambavaram, M.M.R., and Pereira, A. (2010). Molecular and physiological analysis of drought stress in arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol. 154, 1254-1271.
    • Hartmann, T. (2004). Plant-derived secondary metabolites as defensive chemicals in herbivorous insects: a case study in chemical ecology. Planta 219, 1-4.
    • Hartmann, T. (2007). From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68, 2831-2846.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article