LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Watanabe, N; Hiruma, R; Katsu, K (1992)
Languages: English
Types: Article
Subjects: Research Article

Classified by OpenAIRE into

mesheuropmc: biochemical phenomena, metabolism, and nutrition, bacterial infections and mycoses
Identifiers:pmc:PMC190561
E1077 is a novel parenteral cephalosporin with a wide spectrum of potent antibacterial activity against aerobic and anaerobic gram-positive and gram-negative bacteria. Against methicillin-susceptible Staphylococcus aureus, E1077 was twice as active as cefpirome, with an MIC for 90% of strains tested (MIC90) of 0.78 micrograms/ml. Methicillin-resistant S. aureus was moderately to highly resistant to E1077, but E1077 was at least twice as active as other beta-lactams tested. Against Enterococcus faecalis, E1077 was the most active of the cephalosporins tested (MIC90, 12.5 micrograms/ml) and was at least fourfold more active than cefpirome and ceftazidime. At concentrations of less than or equal to 0.78 micrograms/ml, E1077 inhibited 90% of streptococci and most of the members of the family Enterobacteriaceae tested, with the exceptions of Serratia marcescens and Proteus vulgaris, for which the MIC90s of E1077 were both 3.13 micrograms/ml. Against Pseudomonas aeruginosa, E1077 was two- to fourfold more active than cefpirome and ceftazidime. For the anaerobes, E1077 was as active against Bacteroides fragilis as was cefuzonam, and its activity was fourfold higher than those of cefpirome and ceftazidime. E1077 was at least as resistant as cefpirome to hydrolysis by various beta-lactamases, and these enzymes had a low affinity for E1077.

Share - Bookmark

Download from

Cite this article

Collected from