LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pearson-White, S (1993)
Languages: English
Types: Article
Subjects:
Identifiers:pmc:PMC311202
We have cloned and sequenced a novel human isoform of sno, snoI for insertion. SnoI contains 1330 nucleotides inserted in place of 7 nucleotides of the snoN mRNA. Sno is a member of the ski protooncogene family, which has been implicated in muscle development. The two previously known sno alternatively spliced isoforms are snoN (684 amino acids), and snoA (415 amino acids); snoI encodes a truncated isoform of 399 amino acids (44,298 MW). Southern blot experiments show that snoI contains a third alternative exon from the sno gene; a single sno gene can express all three isoforms of sno by alternative splicing. All three isoforms contain the region that is most similar to the ski proto-oncogene. The relationship between snoI and snoN is analogous to that between delta fosB and fosB, where a truncated form of the fosB transcription factor is produced by alternative splicing. We find conservation of human snoI-specific sequences in several mammalian species, in monkey, dog, cow, rabbit and pig, but not in rodents, whereas the common portion of the sno gene is conserved in all vertebrate species tested. SnoN, snoA, and ski mRNAs accumulate in many human tissues including skeletal muscle; the snoI alternative mRNA accumulates more specifically in skeletal muscle. SnoI is also expressed in rhabdomyosarcoma tumor, a tumor that contains differentiated skeletal muscle. The tissue-specific alternative splicing of human snoI, an mRNA in the ski/sno gene family, and the presence of sno mRNAs in muscle are consistent with a proposed role for the sno oncogene in muscle gene regulation.

Share - Bookmark

Download from

Cite this article

Collected from