LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Knoll, Jessica D.; Albani, Bryan A.; Turro, Claudia (2015)
Languages: English
Types: Article
Subjects: Article
Uncovering the factors that govern the electronic structure of Ru(II)–polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and 1O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field (3LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer (3MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2]2+ (bpy = 2,2′-bipyridine; L = CH3CN or py). This suggests that population of the 3LF state proceeds from the vibrationally excited 3MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the 3LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)]2+ complexes (tpy = 2,2′:6′,2″-terpyridine; NN = bpy, 6,6′-dimethyl-2,2′-bipyridine (Me2bpy), 2,2′-biquinoline (biq)) increases by 2–3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the 3LF state within 3–7 ps when NN is bulky, and density functional theory calculations support stabilized 3LF states. Dual activity via ligand dissociation and 1O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2]2+ (dppn = benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine) and [Ru(tpy)(Me2dppn)(py)]2+ (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2′,3′-c]phenazine) introduces low-lying, long-lived dppn/Me2dppn 3ππ* excited states that generate 1O2. Similar to [Ru(bpy)2(CH3CN)2]2+, photodissociation of CH3CN occurs upon irradiation of [Ru(bpy)(dppn)(CH3CN)2]2+, although with lower efficiency because of the presence of the 3ππ* state. The steric bulk in [Ru(tpy)(Me2dppn)(py)]2+ is critical in facilitating the photoinduced py dissociation, as the analogous complex [Ru(tpy)(dppn)(py)]2+ produces 1O2 with near-unit efficiency. The ability to tune the relative energies of the excited states provides a means to design potentially more active drugs for photochemotherapy because the photorelease of drugs can be coupled to the therapeutic action of reactive oxygen species, effecting cell death via two different mechanisms. The lessons learned about tuning of the excited-state properties can be applied to the use of Ru(II)–polypyridyl compounds in a variety of applications, such as solar energy conversion, sensors and switches, and molecular machines.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Collected from