LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Johnson, Roger D.; Jasin, Maria (2000)
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: Articles
Identifiers:pmc:PMC313931
In mammalian cells, repair of DNA double-strand breaks (DSBs) occurs by both homologous and non-homologous mechanisms. By definition, homologous recombination requires a template with sufficient sequence identity to the damaged molecule in order to direct repair. We now show that the sister chromatid acts as a repair template in a substantial proportion of DSB repair events. The outcome of sister chromatid repair is primarily gene conversion unassociated with reciprocal exchange. This contrasts with expectations from the classical DSB repair model originally proposed for yeast meiotic recombination, but is consistent with models in which recombination is coupled intimately with replication. These results may explain why cytologically observable sister chromatid exchanges are induced only weakly by DNA-damaging agents that cause strand breaks, since most homologous repair events would not be observed. A preference for non-crossover events between sister chromatids suggests that crossovers, although genetically silent, may be disfavored for other reasons. Possibly, a general bias against crossing over in mitotic cells exists to reduce the potential for genome alterations when other homologous repair templates are utilized.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Collected from