LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Xu, Hong; Vavilin, Dmitrii; Vermaas, Wim (2001)
Publisher: The National Academy of Sciences
Languages: English
Types: Article
Subjects: Biological Sciences
Identifiers:pmc:PMC61186
An Arabidopsis thaliana chlorophyll(ide) a oxygenase gene (cao), which is responsible for chlorophyll b synthesis from chlorophyll a, was introduced and expressed in a photosystem I-less strain of the cyanobacterium Synechocystis sp. PCC 6803. In this strain, most chlorophyll is associated with the photosystem II complex. In line with observations by Satoh et al. [Satoh, S., Ikeuchi, M., Mimuro, M. & Tanaka, A. (2001) J. Biol. Chem. 276, 4293–4297], chlorophyll b was made but accounted for less than 10% of total chlorophyll. However, when lhcb encoding light-harvesting complex (LHC)II from pea was present in the same strain (lhcb+/cao+), chlorophyll b accumulated in the cell to levels exceeding those of chlorophyll a, although LHCII did not accumulate. In the lhcb+/cao+ strain, the total amount of chlorophyll, the number of chlorophylls per photosystem II center, and the oxygen-evolving activity on a per-chlorophyll basis were similar to those in the photosystem I-less strain. Furthermore, the chlorophyll a/b ratio of photosystem II core particles (retaining CP47 and CP43) and of whole cells of the lhcb+/cao+ strain was essentially identical, and PS II activity could be obtained efficiently by chlorophyll b excitation. These data indicate that chlorophyll b functionally substitutes for chlorophyll a in photosystem II. Therefore, the availability of chlorophylls, rather than their binding specificity, may determine which chlorophyll is incorporated at many positions of photosystem II. We propose that the transient presence of a LHCII/chlorophyll(ide) a oxygenase complex in the lhcb+/cao+ strain leads to a high abundance of available chlorophyll b that is subsequently incorporated into photosystem II complexes. The apparent LHCII requirement for high chlorophyll(ide) a oxygenase activity may be instrumental to limit the occurrence of chlorophyll b in plants to LHC proteins.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Collected from