LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhang, Yu-Kun Jennifer; Lu, Hong; Klaassen, Curtis D. (2012)
Publisher: Oxford University Press
Languages: English
Types: Article
Subjects: Research Article
Identifiers:pmc:PMC3576005
The nuclear receptor constitutive androstane receptor (CAR) is a key regulator for drug metabolism in liver. Human CAR (hCAR) transcripts are subjected to alternative splicing. Some hCAR splicing variants (SVs) have been shown to encode functional proteins by reporter assays. However, in vivo research on the activity of these hCAR SVs has been impeded by the absence of a valid model. This study engineered an hCAR-BAC-transgenic (hCAR-TG) mouse model by integrating the 8.5-kbp hCAR gene as well as 73-kbp upstream and 91-kbp downstream human genomic DNA into the genome of CAR-null mice. A series of experiments demonstrate that (1) the expression of major hCAR mRNA SVs, SV0-4, in livers of hCAR-TG mice is comparable to that in human livers; (2) the hCAR SVs are predominantly expressed in liver, which resembles the tissue distribution of CAR in humans, but diverges from that in mice; and (3) major hCAR mRNA SVs increase markedly in postnatal livers of hCAR-TG mice, which mimics the ontogeny of CAR mRNA in humans. Thus, the transgene likely contains all the functional regulatory elements controlling proper spatial and temporal expression of the hCAR gene. Moreover, hCAR-TG mice respond to the hCAR-specific agonist 6-(4-chlorophenyl)imidazo[2,1-b] [1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime instead of the mouse CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, as well as the common CAR activator, phenobarbital, suggesting that hCAR is fully functional in livers of transgenic mice. In summary, the hCAR-TG mice developed by this study represent a valid model for studying in vivo function and regulation of hCAR and its splicing variants.

Share - Bookmark

Download from

Cite this article

Collected from