LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Publisher: Oxford University Press
Journal: Journal of Experimental Botany
Languages: English
Types: Article
Subjects: citrate, MATE transporters, Tolerância ao alumínio, Acid soil, resistance, cereal, Citrato, root exudates, Solo ácido, Hordeum vulgare, Transgênico, transgenic., Cevada, Research Paper

Classified by OpenAIRE into

mesheuropmc: integumentary system, food and beverages
Malate and citrate efflux from root apices is a mechanism of Al3+ tolerance in many plant species. Citrate efflux is facilitated by members of the MATE (multidrug and toxic compound exudation) family localized to the plasma membrane of root cells. Barley (Hordeum vulgare) is among the most Al3+-sensitive cereal species but the small genotypic variation in tolerance that is present is correlated with citrate efflux via a MATE transporter named HvAACT1. This study used a biotechnological approach to increase the Al3+ tolerance of barley by transforming it with two MATE genes that encode citrate transporters: SbMATE is the major Al3+-tolerance gene from sorghum whereas FRD3 is involved with Fe nutrition in Arabidopsis. Independent transgenic and null T3 lines were generated for both transgenes. Lines expressing SbMATE showed Al3+-activated citrate efflux from root apices and greater tolerance to Al3+ toxicity than nulls in hydroponic and short-term soil trials. Transgenic lines expressing FRD3 exhibited similar phenotypes except citrate release from roots occurred constitutively. The Al3+ tolerance of these lines was compared with previously generated transgenic barley lines overexpressing the endogenous HvAACT1 gene and the TaALMT1 gene from wheat. Barley lines expressing TaALMT1 showed significantly greater Al3+ tolerance than all lines expressing MATE genes. This study highlights the relative efficacy of different organic anion transport proteins for increasing the Al3+ tolerance of an important crop species.