LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Berti-Equille, Laure; Loh, J. M.; Dasu, T. (2015)
Types: Article
Subjects: Masking, Anomaly detection, Outlier detection, Duplicate record identification, Missing values

Classified by OpenAIRE into

ACM Ref: Hardware_INTEGRATEDCIRCUITS
Data glitches are errors in a dataset. They are complex entities that often span multiple attributes and records. When they co-occur in data, the presence of one type of glitch can hinder the detection of another type of glitch. This phenomenon is called masking. In this paper, we define two important types of masking and propose a novel, statistically rigorous indicator called masking index for quantifying the hidden glitches. We outline four cases of masking: outliers masked by missing values, outliers masked by duplicates, duplicates masked by missing values, and duplicates masked by outliers. The masking index is critical for data quality profiling and data exploration. It enables a user to measure the extent of masking and hence the confidence in the data. In this sense, it is a valuable data quality index for choosing an anomaly detection method that is best suited for the glitches that are present in any given dataset. We demonstrate the utility and effectiveness of the masking index by intensive experiments on synthetic and real-world datasets.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Collected from