Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Mansourpoor, M.; Shariati, A. (2014)
Publisher: Croatian Society of Chemical Engineers
Journal: Chemical and biochemical engineering quarterly
Languages: English
Types: Article
Subjects: Biodiesel; combustion efficiency; emission; renewable energy; waste cooking oil
In this work, waste cooking oil and methanol as feedstock together with sulfuric acid and potassium hydroxide as catalysts were used to produce biodiesel. The physical properties of the waste cooking oil, the produced biodiesel and the purchased petrodiesel were measured using specified ASTM standards. To examine their performance and their flue gases emissions, biodiesel and petrodiesel were burnt in a wet base semi-industrial boiler. The emitted combustion gases, including CO, NOx, SO2 and CO2, were measured with a flue-gas analyzer at a wide range of air-to-fuel ratios and two levels of energy. For better reliability, all tests were repeated five times and almost no measurable differences were found in the repeat tests. The results show that produced biodiesel meets ASTM standards for flash point, heating value, specific gravity, kinematic viscosity, copper corrosion, acid number, cetane number, carbon residue, and total sulfur. These properties of biodiesel are also comparable with the petrodiesel properties. The trends of exhaust temperature and combustion efficiency of biodiesel are the same as petrodiesel at different air-to-fuel ratio. However, they are slightly lower. The CO, NOx, SO2 and CO2 emissions of biodiesel are lower than those of petrodiesel at different air-to-fuel ratios and two levels of energy.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Vasudevan, P. T., Briggs, M., J. Ind. Microbiol. Biotechnol. 35 (2008)421-430.
    • 2. Dincer, I., Renewable Sustainable Energy Rev. 4 (2000) 157-175.
    • 3. Demirbas, A., Prog. Energy Combust. Sci. 31 (2005) 466-487.
    • 4. Launhardt T., Thoma H., Chemosphere 40 (2000) 1149-1157.
    • 5. Alcantara, R., Amores, J., Canoira, L., Fidalgo, E., Franco, M. J., Navarro, A., Biomass Bioenergy 18 (2000) 515-527.
    • 6. Canakci, M., Gerpen, J. V., Trans. ASAE 44 (6) (2001) 1429-1436.
    • 7. Zhang, Y., Dubé, M. A., McLean, D. D., Kates, M., Bioresour. Technol. 89 (2003) 1-16.
    • 8. Canakci, M., Gerpen, J. V., Trans. ASAE 46 (4) (2003) 945-954.
    • 9. Özbay, N., Oktar, N., Tapan, N. A., Fuel 87 (2008) 1789-1798.
    • 10. Zheng, S., Kates, M., Dubé, M. A., McLean, D. D., Biomass Bioenergy 30 (2006) 267-272.
    • 11. Wang, Y., Ou, S. Y., Liu, P. Z., Xue, F., Tang, S., J. Mol. Catal. A: Chem. 252 (2006) 107-112.
    • 12. Issariyakul T., Kulkarni, M. G., Dalai, A. K., Bakhshi, N. N., Fuel Process.Technol. 88 (2007) 429-436.
    • 13. Chen, G., Ying, M., Li, W. Z., Appl. Biochem. Biotechnol. (2006) 129-132, 911-921.
    • 14. Silva, V. M. T. M., Rodrigues, A. E., Chem. Eng. Sci. 61 (2006) 316-331.
    • 15. Ngo, H. L., Zafiropoulos, N. A., Foglia, T. A., Samulski, E. T., Lin, W. B., Energy Fuel 22 (2008) 626-634.
    • 16. Cao, P. G., Dubé, M. A., Tremblay, A. Y., Biomass Bioenergy 32 (2008) 1028-1036.
    • 17. Haas, M. J., Bloomer, S., Scott, K., J. Am. Oil Chem. Soc. 77 (4) (2000) 373.
    • 18. Jin, B., Zhu, M., Fan, P., Yu, L. J., Fuel Process. Technol. 89 (2008) 77.
    • 19. Wang, Z. M., Lee, J. S., Park, J. Y., Wu, C. Z., Yuan, Z. H., Kor. J. Chem. Eng. 24 (6) (2007) 1027.
    • 20. Usta, N., Öztürk, E., Can, Ö., Conkur, E. S., Nas, S., Çon, A. H., Can, A. Ç., Topcu, M., Energy Convers. Manage. 46 (2005), 741.
    • 21. Keskin, A., Gürü, M., Altiparmak, D., Aydin, K., Renewable Energy 33 (2008) 553.
    • 22. Haas, M. J., McAloon, A. J., Yee, W. C., Foglia, T. A., Bioresour. Technol. 97 (2006) 671.
    • 23. Zhang, Y., Dubé, M. A., McLean, D. D., Kates, M., Bioresour. Technol. 90 (2003) 229.
    • 24. Cvengroš, J., Cvengrošová, Z., Biomass Bioenergy 27 (2004) 173.
    • 25. Dorado, M. P., Ballesteros, E., de Almeida, J. A., Schellert, C., Löhrlein, H. P., Krause, R., Trans. ASAE 45 (3) (2002) 525.
    • 26. Demirbas, A., Energy Convers. Manage. 49 (2008) 125.
    • 27. Tomasevic, A. V., Siler Marinkovic, S. S., Fuel Process. Technol. 81 (1) (2003) 1.
    • 28. Wright, H. J., Segur, J. B., Clark, H. V., Coburn, S. K., Langdon, E. E., DuPuis, E. N., Oil & Soap (1944) 145.
    • 29. Freedman, B., Butterfield, R. O., Pryde, E. H., J. Am. Oil Chem. Soc. 63 (1986) 1375.
    • 30. Mansourpoor, M, Shariati, A., J. Chem. Eng. Process Technol. 3 (2012) 141.
    • 31. Leung, D. Y. C., Guo, Y., Fuel Process Technol. 87 (2006) 883.
    • 32. Barnwal, BK, Sharma, M. P., Renewable Sustainable Energy Rev. 9 (2005) 363.
    • 33. Houri Jafari, H., Baratimalayeri, A., Energy Policy 36 (2008) 2536.
    • 34. Gui, M. M., Lee, K. T., Bhatia, S., Energy 43 (2008) 1643.
    • 35. Maa, F., Hanna, M. A., Bioresour. Technol. 70 (1999) 1.
    • 36. Kansedo, J., Lee, K. T., Bhatia, S., Fuel 88 (2009) 1148.
    • 37. Keera, S. T., El Sabagh, S. M., Taman, A. R., Fuel 90 (2011) 42.
    • 38. Yo-ping Greg Wu, Ya-fen Lin, Chang-Tang Chang, Fuel 86 (17) (2007) 2810.
    • 39. Tashtoush G., Al-Widyan M., Al-Shyoukh M., Appl. Therm. Eng. 23 (2003) 285.
    • 40. Batey, J., Combustion testing of a bio-diesel fuel oil blend in residential oil burning equipment. Tech Rep Energy Research Center, prepared for: Massachusetts Oil heat Council & National Oil heat Research Alliance; (July 2003).
    • 41. Heywood, J. B., Internal combustion engine fundamentals, McGraw-Hill; (1988).
    • 42. Walker, K. C., Royal Agricultural Society of England, 155 (1994) 43.
    • 43. Szybist, J., Kirby, S., Boehman, A., Energy Fuels 19 (2005) 1484.
    • 44. McCormick, R. L., Graboski, M. S., Alleman, T. L., Herring, A. M., Environ. Sci. Technol. 35 (2001) 1742.
    • 45. Cheng, A. S., Upatnieks, A., Mueller, C. J., Investigation of the impact of biodiesel fueling on NOx emissions using an optical di diesel engine. SAE 2006: Powertrain & fluid systems conference, Toronto, Canada; (October 2006).
    • 46. Hess, K. C., Haas, M. J., Foglia, T. A., Marmer, W. N., Energy Fuels 19 (2005) 1749.
    • 47. Krishna, C. R., Celebi, Y., Wei, G., Butcher, T., McDonald, R., Lab tests of biodiesel blends in residential heating equipment. In: Proceedings of the 2001 national oil heat research alliance technology conference; (2001).
    • 48. Krishna, C. R., Butcher, T., McDonald, R., Celebi, Y., Wei, G., Update on use of biodiesel blends in boilers. In: Proceedings of the 2002 national oil heat research alliance technology conference; (2002).
    • 49. Krishna, C. R., Low cost bio heating oil application. Brookhaven national laboratory informal report BNL71444-2003-IR; (2003).
    • 50. Krishna, C. R., Biodiesel blends in space heating equipment. National renewable energy laboratory report NREL/SR-510-33579; (2004)
    • 51. Kait, Ng H., Gan, S., Appl. Therm. Eng. 30 (2010) 2476.
    • 52. Win Lee, S., Herage, T., Young, B., Fuel 83 (2004) 1607.
    • 53. Vanlaningham, N., Gibson, H., Kaufman, B., Evaluation of soybean heating oil blends for use 305 in residential applications, no. 046082, ASAE paper, annual meeting held on August 23-24; 2004.
    • 54. Bazooyar, B., Ghorbani, A., Shariati, A., Fuel 90 (2011) 3078.
    • 55. U. S. Department of Energy, Biodiesel Handling and Use Guide. National Renewable Energy Laboratory, (2008), Fourth Edition NREL/TP-540-43672.
    • 56. Ghorbani, A., Bazooyar, B., Shariati, A., Jokar, S. M., Ajami, H., Naderi, A., Appl. Energy 88 (2011) 4725.
    • 57. Goering, C., Schrock, M., Kaufman, K., Hanna, M., Harris, F., Marley, S., Evaluation of vegetable oil fuels in engines. ASAE Paper no. 871586; 1987.
    • 58. Vera, C. R., D'Ippolito, S. A., Pieck, C. L., Parera, J. M., Production of biodiesel by a two-step supercritical reaction process with adsorption refining, 2nd Mercosur Congress on Chemical Engineering, 4th Mercosur Congress on Process Systems Engineering, Rio de Janeiro 2007.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article